

Contents

• The primary purpose of this reader is to describe the use of analysis equations and

methodologies of structures for design purposes. It is common these days that we hear
from industry that the students graduating with engineering degrees do not know how
to design whether it is structures, or mechanical systems, or systems from other
engineering disciplines. We therefore put the emphasis in this course on design.

• Anybody who has some understanding of the design process, however, realises that
without a thorough understanding of the use of analysis methods it will not be possible
to design at least a reliable system. It is, therefore, important to establish a sound and
firm analysis foundation before one can start the design practice.

• The approach used in this reader, however, is different from the traditional one in which
analysis and designs are taught in different portions of the course. Instead we will use
an approach in which small portions (sections) of topics from analysis are first
introduced immediately followed by their design implementation.

• A more detailed description of the outline and the contents of the reader is provided in
the following. The reader is divided into two primary sections because of a very
important concept, called statical determinacy, that has a very strong influence on the
way structures are designed. It is of course too early to completely describe the impact
of statical indeterminacy on design.

• It will be sufficient to state at this point that statical determinacy simplifies the design
process of a structure made of multiple components by making it possible to design
individual components independent from one another. Structural indeterminacy on the
other hand causes the internal load distribution in a given structural system to be
dependent on the dimensional and material properties of the individual component that
are typically being designed. T

• hat is, as the design of the individual components change the loads acting on those
components for which they are being designed also change. Hence, individ1 2 ual
components cannot be designed independently as the design changes in these
components and the other components around them alter the loads that they are being
designed for.

• The resulting process is an iterative one requiring design of all the individual
components to be repeated again and again until the internal load redistribution
stabilises, reaching an equilibrium state with the prescribed external loading.

Contents

• Composite materials are widely used in the Aircraft Industry and have allowed
engineers to overcome obstacles that have been met when using the materials
individually.

• The constituent materials retain their identities in the composites and do not
dissolve or otherwise merge completely into each other. Together, the materials
create a 'hybrid' material that has improved structural properties.

• The development of light-weight, high-temperature resistant composite materials
will allow the next generation of high-performance, economical aircraft designs to
materialize. Usage of such materials will reduce fuel consumption, improve
efficiency and reduce direct operating costs of aircrafts.

• Composite materials can be formed into various shapes and, if desired, the fibres
can be wound tightly to increase strength. A useful feature of composites is that
they can be layered, with the fibres in each layer running in a different direction.

• This allows an engineer to design structures with unique properties. For example,
a structure can be designed so that it will bend in one direction, but not another.

• n a basic composite, one material acts as a supporting matrix, while another
material builds on this base scaffolding and reinforces the entire material.
Formation of the material can be an expensive and complex process.

• In essence, a base material matrix is laid out in a mould under high temperature
and pressure. An epoxy or resin is then poured over the base material, creating a
strong material when the composite material is cooled. The composite can also
be produced by embedding fibres of a secondary material into the base matrix.

• Composites have good tensile strength and resistance to compression, making
them suitable for use in aircraft part manufacture. The tensile strength of the
material comes from its fibrous nature. When a tensile force is applied, the fibres
within the composite line up with the direction of the applied force, giving its
tensile strength.

• The good resistance to compression can be attributed to the adhesive and
stiffness properties of the base matrix system. It is the role of the resin to
maintain the fibres as straight columns and to prevent them from buckling.

https://en.wikipedia.org/wiki/Composite_material
https://en.wikipedia.org/wiki/Epoxy
https://en.wikipedia.org/wiki/Resin

M.A.M. SCHOOL OF ENGINEERING
DEPARTMENT OF MECHANICAL ENGINEERING

Teacher Teach Teacher (TTT) Programme

ACADEMIC YEAR 2019- 20 (ODD SEMESTER)

Sl.No. Name of the Faculty Syllabus Date & Session

1 Dr.P.Ranjith kumar Computer Integrated Manufacturing
07/09/2019

FN

2 R.Ramanathan
Manufacturing Method by using Various Sheet Metals /

Materials.

12/10/2019

FN

 HoD

M.A.M. SCHOOL OF ENGINEERING
DEPARTMENT OF MECHANICAL ENGINEERING

Teachers Teach Teacher (TTT) Programme

ACADEMIC YEAR 2019-20 (EVEN SEMESTER)

Sl.No. Name of the Faculty Syllabus Date & Period

1 Dr.M.Panneerselvam
Design of Various Mechanical Elements. 03/01/2020

FN

2 Dr.K.Chandrasekaran
Optimazation Tools and Technique Composite
Materials

15/02/2020
FN

HoD

Introduction to Computer Integrated Manufacturing
(CIM)

1. Flexible Manufacturing System (FMS)
2. Variable Mission Mfg. (VMM)
3. Computerized Mfg. System (CMS)

Four-Plan Concept of Manufacturing

CIM System discussed:

 Computer Numerical Control (CNC)
 Direct Numerical Control (DNC)
 Computer Process Control
 Computer Integrated Production Management
 Automated Inspection Methods
 Industrial Robots etc.

A CIM System consists of the following basic components:

I. Machine tools and related equipment
II. Material Handling System (MHS)
III. Computer Control System
IV. Human factor/labor

CIMS Benefits:

1. Increased machine utilization
2. Reduced direct and indirect labor
3. Reduce mfg. lead time
4. Lower in process inventory
5. Scheduling flexibility
6. etc.

CIM refers to a production system that consists of:

1. A group of NC machines connected together by
2. An automated materials handling system
3. And operating under computer control

Why CIMS?
In Production Systems

1. Transfer Lines: is very efficient when producing "identical" parts in large
volumes at high product rates.

2. Stand Alone: NC machine: are ideally suited for variations in work part
configuration.

In Manufacturing Systems:

1. Special Mfg. System: the least flexible CIM system. It is designed to produce a

CIM System

Transfer
Lines

Stand Alone
NC Machine

Part Variety (# of different parts)

Production
Volumn
(part/yr)

15,000

15

Part Variety (# of different parts)

Production
Volumn
(part/yr)

15,000

15

Special
System

Manfuacturing
Cell

Flexible
Manufacturing
System

8001002

very limited number of different parts (2 - 8).
2. Mfg. Cell: the most flexible but generally has the lowest number of different parts

manufactured in the cell would be between 40 - 80. Annual production rates rough
from 200 - 500.

3. Flexible Mfg. System: A typical FMS will be used to process several part families
with 4 to 100 different part numbers being the usual case.

General FMS

Conventional Approaches to Manufacturing

Conventional approaches to manufacturing have generally centered around machines
laid out in logical arrangements in a manufacturing facility. These machine layouts
are classified by:

1. Function - Machines organized by function will typically perform the same
function, and the location of these departments relative to each other is normally

arranged so as to minimize interdepartmental material handling. Workpiece
produced in functional layout departments and factories are generally manufactured
in small batches up to fifty pieces (a great variety of parts).

2. Line or flow layout - the arrangement of machines in the part processing order or
sequence required. A transfer line is an example of a line layout. Parts progressively
move from one machine to another in a line or flow layout by means of a roller
conveyor or through manual material handling. Typically, one or very few different
parts are produced on a line or flow type of layout, as all parts processed require the
same processing sequence of operations. All machining is performed in one
department, thereby minimizing interdepartmental material handling.

3. Cell - It combines the efficiencies of both layouts into a single multi-functional unit.
It referred to as a group technology cell, each individual cell or department is
comprised of different machines that may not be identical or even similar. Each cell
is essentially a factory within a factory, and parts are grouped or arranged into
families requiring the same type of processes, regardless of processing order.
Cellular layouts are highly advantageous over both function and line machine
layouts because they can eliminate complex material flow patterns and consolidate
material movement from machine to machine within the cell.

Manufacturing Cell

Four general categories:

1. Traditional stand-alone NC machine tool - is characterized as a limited-storage,
automatic tool changer and is traditionally operated on a one-to-one machine to
operator ratio. In many cased, stand-alone NC machine tools have been grouped
together in a conventional part family manufacturing cell arrangement and
operating on a one-to-one or two-to-one or three-to-one machine to operator ratio.

2. Single NC machine cell or mini-cell - is characterized by an automatic work
changer with permanently assigned work pallets or a conveyor-robot arm system
mounted to the front of the machine, plus the availability of bulk tool storage.
There are many machines with a variety of options, such as automatic probing,
broken tool detection, and high-pressure coolant control. The single NC machine
cell is rapidly gaining in popularity, functionality, and affordability.

3. Integrated multi-machine cell - is made up of a multiplicity of metal-cutting
machine tools, typically all of the same type, which have a queue of parts, either
at the entry of the cell or in front of each machine. Multi-machine cells are either
serviced by a material-handling robot or parts are palletized in a two- or
three-machine, in-line system for progressive movement from one machining

station to another.

FMS - sometimes referred to as a flexible manufacturing cell (FMC), is characterized
by multiple machines, automated random movement of palletize parts to and from
processing stations, and central computer control with sophisticated command-driven
software. The distinguishing characteristics of this cell are the automated flow of raw
material to the cell, complete machining of the part, part washing, drying, and
inspection with the cell, and removal of the finished part.

I. Machine Tools & Related Equipment

 Standard CNC machine tools
 Special purpose machine tools
 Tooling for these machines
 Inspection stations or special inspection probes used with the machine tool

The Selection of Machine Tools
1. Part size
2. Part shape
3. Part variety
4. Product life cycle
5. Definition of function parts
6. Operations other than machining - assembly, inspection etc.

II. Material Handling System

A. The primary work handling system - used to move parts between machine tools
in the CIMS. It should meet the following requirements.

i). Compatibility with computer control
ii). Provide random, independent movement of palletized work parts between

machine tools.
iii). Permit temporary storage or banking of work parts.
iv). Allow access to the machine tools for maintenance tool changing & so on.
v). Interface with the secondary work handling system
vi). etc.

B. The secondary work handling system - used to present parts to the individual
machine tools in the CIMS.

i). Same as A (i).
ii). Same as A (iii)
iii). Interface with the primary work handling system
iv). Provide for parts orientation & location at each workstation for processing.

III. Computer Control System - Control functions of a firm and the supporting
computing equipment

Control Loop of a Manufacturing System

IV. Functions of the computer in a manufacturing organization

V. Functions of Computer in CIMS
1. Machine Control –CNC

NC
Programming

Micro Computer
(Software Function

&
NC Program Storage)

Feedback

Machine
Center

Hardware
(interface

&
Servo)

2. Direct Numerical Control (DNC) - A manufacturing system in which a number of
m/c are controlled by a computer through direct connection & in real time.

Consists of 4 basic elements:

 Central computer
 Bulk memory (NC program storage)
 Telecommunication line
 Machine tools (up to 100)

3. Production Control - This function includes decision on various parts onto the
system.

Decision are based on:
 red production rate/day for the various parts
 Number of raw work parts available
 Number of available pallets

4. Traffic & Shuttle Control - Refers to the regulations of the primary & secondary
transportation systems which moves parts between workstation.

5. Work Handling System Monitoring - The computer must monitor the status of
each cart & /or pallet in the primary & secondary handling system.

6. Tool Control
 Keeping track of the tool at each station
 Monitoring of tool life

7. System Performance Monitoring & Reporting - The system computer can be
programmed to generate various reports by the management on system
performance.

 Utilization reports - summarize the utilization of individual workstation as well
as overall average utilization of the system.

 Production reports - summarize weekly/daily quantities of parts produced from
a CIMS (comparing scheduled production vs. actual production)

 Status reports - instantaneous report "snapshot" of the present conditions of the
CIMS.

 Tool reports - may include a listing of missing tool, tool-life status etc.

Central

Computer

Bulk memory
(NC Program)

Satellit

Minicomputer
Bulk

memory

m/c m/c

sends instructions & relieves data (ethernet)

Tele-Communication Lines

Up to 100 m/c tools

8. Manufacturing data base

 Collection of independent data bases
 Centralized data base
 Interfaced data base
 Distributed data base

Production Strategy
The production strategy used by manufacturers is based on several factors; the two
most critical are customer lead time and manufacturing lead time.
Customer lead time identifies the maximum length of time that a typical customer is
willing to wait for the delivery of a product after an order is placed.
Manufacturing lead time identifies the maximum length of time between the receipt of
an order and the delivery of a finished product.
Manufacturing lead time and customer lead time must be matched. For example,
when a new car with specific options is ordered from a dealer, the customer is willing
to wait only a few weeks for delivery of the vehicle. As a result, automotive
manufacturers must adopt a production strategy that permits the manufacturing
lead-time to match the customer's needs.
The production strategies used to match the customer and manufacturer lead times are
grouped into four categories:

1. Engineer to order (ETO)
2. Make to order (MTO)
3. Assemble to order (ATO)
4. Make to stock (MTS)

Engineer to Order
A manufacturer producing in this category has a product that is either in the first stage
of the life-cycle curve or a complex product with a unique design produced in
single-digit quantities. Examples of ETO include construction industry products
(bridges, chemical plants, automotive production lines) and large products with
special options that are stationary during production (commercial passenger aircraft,
ships, high-voltage switchgear, steam turbines). Due to the nature of the product, the
customer is willing to accept a long manufacturing lead time because the engineering
design is part of the process.

Make to Order
The MTO technique assumes that all the engineering and design are complete and the
production process is proven. Manufacturers use this strategy when the demand is

unpredictable and when the customer lead-time permits the production process to start
on receipt of an order. New residential homes are examples of this production strategy.
Some outline computer companies make personal computer to customer specifications,
so they followed MTO specifications.

Assemble to Order
The primary reason that manufacturers adopt the ATO strategy is that customer lead
time is less than manufacturing lead time. An example from the automotive industry
was used in the preceding section to describe this situation for line manufacturing
systems. This strategy is used when the option mix for the products can be forecast
statistically: for example, the percentage of four-door versus two-door automobiles
assembled per week. In addition, the subassemblies and parts for the final product are
carried in a finished components inventory, so the final assembly schedule is
determined by the customer order. John Deere and General Motors are examples of
companies using this production strategy.

Make to Stock
MTS, is used for two reasons: (1) the customer lead time is less than the
manufacturing lead time, (2) the product has a set configuration and few options so
that the demand can be forecast accurately. If positive inventory levels (the store shelf
is never empty) for a product is an order-winning criterion, this strategy is used. When
this order-winning criterion is severe, the products are often stocked in distribution
warehouses located in major population centers. This option is often the last phase of
a product's life cycle and usually occurs at maximum production volume.

Manufacturing Enterprise (Organization)
 In most manufacturing organizations the functional blocks can be found as:
 A CIM implementation affects every part of an enterprise; as a result, every

block in the organizational model is affected.

Sales and Promotion
 The fundamental mission of sales and promotion (SP) is to create customers.
To achieve this goal, nine internal functions are found in many companies: sales,
customer service, advertising, product research and development, pricing,
packaging, public relations, product distribution, and forecasting.

sales and promotion interfaces with several other areas in the business:
 The customer services interface supports three major customer functions:

order entry, order changes, and order shipping and billing. The order change
interface usually involves changes in product specifications, change in
product quantity (ordered or available for shipment), and shipment dates and
requirements.

 Sales and marketing provide strategic and production planning information to
the finance and management group, product specification and customer
feedback information to product design, and information for master
production scheduling to the manufacturing planning and control group.

Product/Process Definition Engineering
 The unit includes product design, production engineering, and engineering

release.
 The product design provides three primary functions: (1) product design and

conceptualization, (2) material selection, and (3) design documentation.
 The production engineering area establishes three sets of standards: work,

process, and quality.
 The engineering release area manages engineering change on every

production part in the enterprise. Engineering release has the responsibility of
securing approvals from departments across the enterprise for changes made
in the product or production process.

Manufacturing Planning and Control (MPC)
 The manufacturing planning and control unit has a formal data and

information interface with several other units and departments in the
enterprise.

 The MPC unit has responsibility for:
1. Setting the direction for the enterprise by translating the management

plan into manufacturing terms. The translation is smooth if
order-winning criteria were used to develop the management plan.

2. Providing detailed planning for material flow and capacity to support
the overall plan.

3. Executing these plans through detailed shop scheduling and purchasing
action.

MPC Model for Information Flow

Shop Floor
 Shop floor activity often includes job planning and reporting, material

movement, manufacturing process, plant floor control, and quality control.
 Interfaces with the shop floor unit are illustrated.

Support Organization
 The support organizations, indicated vary significantly from firm to firm.
 The functions most often included are security, personnel, maintenance,

human resource development, and computer services.
 Basically, the support organization is responsible for all of the functions not

provided by the other model elements.
Production Sequence :one possibility for the flow required to bring a product to a
customer

OPTIMIZATION

An introduction

A. Astolfi

First draft – September 2002

Last revision – September 2006

Contents

1 Introduction 1
1.1 Introduction . 2
1.2 Statement of an optimization problem . 3

1.2.1 Design vector . 4
1.2.2 Design constraints . 4
1.2.3 Objective function . 4

1.3 Classification of optimization problems . 6
1.4 Examples . 6

2 Unconstrained optimization 9
2.1 Introduction . 10
2.2 Definitions and existence conditions . 10
2.3 General properties of minimization algorithms 17

2.3.1 General unconstrained minimization algorithm 17
2.3.2 Existence of accumulation points . 18
2.3.3 Condition of angle . 19
2.3.4 Speed of convergence . 22

2.4 Line search . 23
2.4.1 Exact line search . 24
2.4.2 Armijo method . 24
2.4.3 Goldstein conditions . 26
2.4.4 Line search without derivatives . 27
2.4.5 Implementation of a line search algorithm 29

2.5 The gradient method . 29
2.6 Newton’s method . 31

2.6.1 Method of the trust region . 35
2.6.2 Non-monotonic line search . 36
2.6.3 Comparison between Newton’s method and the gradient method . . 37

2.7 Conjugate directions methods . 37
2.7.1 Modification of βk . 40
2.7.2 Modification of αk . 41
2.7.3 Polak-Ribiere algorithm . 41

2.8 Quasi-Newton methods . 42

iii

iv CONTENTS

2.9 Methods without derivatives . 45

3 Nonlinear programming 49
3.1 Introduction . 50
3.2 Definitions and existence conditions . 51

3.2.1 A simple proof of Kuhn-Tucker conditions for equality constraints . 53
3.2.2 Quadratic cost function with linear equality constraints 54

3.3 Nonlinear programming methods: introduction 54
3.4 Sequential and exact methods . 55

3.4.1 Sequential penalty functions . 55
3.4.2 Sequential augmented Lagrangian functions 57
3.4.3 Exact penalty functions . 59
3.4.4 Exact augmented Lagrangian functions 61

3.5 Recursive quadratic programming . 62
3.6 Concluding remarks . 64

4 Global optimization 65
4.1 Introduction . 66
4.2 Deterministic methods . 66

4.2.1 Methods for Lipschitz functions . 66
4.2.2 Methods of the trajectories . 68
4.2.3 Tunneling methods . 70

4.3 Probabilistic methods . 71
4.3.1 Methods using random directions . 71
4.3.2 Multistart methods . 72
4.3.3 Stopping criteria . 72

List of Figures

1.1 Feasible region in a two-dimensional design space. Only inequality con-
straints are present. 4

1.2 Design space, objective functions surfaces, and optimum point. 5
1.3 Electrical bridge network. 6

2.1 Geometrical interpretation of the anti-gradient. 13
2.2 A saddle point in IR2. 16
2.3 Geometrical interpretation of Armijo method. 25
2.4 Geometrical interpretation of Goldstein method. 27

2.5 The function
√

ξ
ξ − 1
ξ + 1

. 30

2.6 Behavior of the gradient algorithm. 31
2.7 The simplex method. The points x(1), x(2) and x(3) yields the starting

simplex. The second simplex is given by the points x(1), x(2) and x(4). The
third simplex is given by the points x(2), x(4) and x(5). 47

4.1 Geometrical interpretation of the Lipschitz conditions (4.2) and (4.3). . . . 66
4.2 Geometrical interpretation of Schubert-Mladineo algorithm. 68
4.3 Interpretation of the tunneling phase. 70
4.4 The functions f(x) and T (x, x�

k). 71

v

vi LIST OF FIGURES

List of Tables

1.1 Properties of the articles to load. 7

2.1 Comparison between the gradient method and Newton’s method. 37

vii

viii LIST OF TABLES

Chapter 1

Introduction

2 CHAPTER 1. INTRODUCTION

1.1 Introduction

Optimization is the act of achieving the best possible result under given circumstances.
In design, construction, maintenance, ..., engineers have to take decisions. The goal of all
such decisions is either to minimize effort or to maximize benefit.
The effort or the benefit can be usually expressed as a function of certain design variables.
Hence, optimization is the process of finding the conditions that give the maximum or the
minimum value of a function.
It is obvious that if a point x� corresponds to the minimum value of a function f(x), the
same point corresponds to the maximum value of the function −f(x). Thus, optimization
can be taken to be minimization.
There is no single method available for solving all optimization problems efficiently. Hence,
a number of methods have been developed for solving different types of problems.
Optimum seeking methods are also known as mathematical programming techniques,
which are a branch of operations research. Operations research is coarsely composed
of the following areas.

• Mathematical programming methods. These are useful in finding the minimum of a
function of several variables under a prescribed set of constraints.

• Stochastic process techniques. These are used to analyze problems which are de-
scribed by a set of random variables of known distribution.

• Statistical methods. These are used in the analysis of experimental data and in the
construction of empirical models.

These lecture notes deal mainly with the theory and applications of mathematical program-
ming methods. Mathematical programming is a vast area of mathematics and engineering.
It includes

• calculus of variations and optimal control;

• linear, quadratic and non-linear programming;

• geometric programming;

• integer programming;

• network methods (PERT);

• game theory.

The existence of optimization can be traced back to Newton, Lagrange and Cauchy. The
development of differential methods for optimization was possible because of the contri-
bution of Newton and Leibnitz. The foundations of the calculus of variations were laid by
Bernoulli, Euler, Lagrange and Weierstrasse. Constrained optimization was first studied
by Lagrange and the notion of descent was introduced by Cauchy.

1.2. STATEMENT OF AN OPTIMIZATION PROBLEM 3

Despite these early contributions, very little progress was made till the 20th century, when
computer power made the implementation of optimization procedures possible and this in
turn stimulated further research methods.
The major developments in the area of numerical methods for unconstrained optimization
have been made in the UK. These include the development of the simplex method (Dantzig,
1947), the principle of optimality (Bellman, 1957), necessary and sufficient conditions of
optimality (Kuhn and Tucker, 1951).
Optimization in its broadest sense can be applied to solve any engineering problem, e.g.

• design of aircraft for minimum weight;

• optimal (minimum time) trajectories for space missions;

• minimum weight design of structures for earthquake;

• optimal design of electric networks;

• optimal production planning, resources allocation, scheduling;

• shortest route;

• design of optimum pipeline networks;

• minimum processing time in production systems;

• optimal control.

1.2 Statement of an optimization problem

An optimization, or a mathematical programming problem can be stated as follows.
Find

x = (x1, x2,, xn)

which minimizes
f(x)

subject to the constraints
gj(x) ≤ 0 (1.1)

for j = 1, . . . ,m, and
lj(x) = 0 (1.2)

for j = 1, . . . , p.
The variable x is called the design vector, f(x) is the objective function, gj(x) are the
inequality constraints and lj(x) are the equality constraints. The number of variables n
and the number of constraints p + m need not be related. If p + m = 0 the problem is
called an unconstrained optimization problem.

4 CHAPTER 1. INTRODUCTION

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

x1

x2

g = 04

g = 03

g = 02

g = 0
1

Infeasible region

Feasible region

Figure 1.1: Feasible region in a two-dimensional design space. Only inequality constraints
are present.

1.2.1 Design vector

Any system is described by a set of quantities, some of which are viewed as variables
during the design process, and some of which are preassigned parameters or are imposed
by the environment. All the quantities that can be treated as variables are called design
or decision variables, and are collected in the design vector x.

1.2.2 Design constraints

In practice, the design variables cannot be selected arbitrarily, but have to satisfy certain
requirements. These restrictions are called design constraints. Design constraints may
represent limitation on the performance or behaviour of the system or physical limita-
tions. Consider, for example, an optimization problem with only inequality constraints,
i.e. gj(x) ≤ 0. The set of values of x that satisfy the equations gj(x) = 0 forms a hypersur-
face in the design space, which is called constraint surface. In general, if n is the number
of design variables, the constraint surface is an n− 1 dimensional surface. The constraint
surface divides the design space into two regions: one in which gj(x) < 0 and one in which
gj(x) > 0. The points x on the constraint surface satisfy the constraint critically, whereas
the points x such that gj(x) > 0, for some j, are infeasible, i.e. are unacceptable, see
Figure 1.1.

1.2.3 Objective function

The classical design procedure aims at finding an acceptable design, i.e. a design which
satisfies the constraints. In general there are several acceptable designs, and the purpose

1.2. STATEMENT OF AN OPTIMIZATION PROBLEM 5

x1

x2 Feasible region

f=a
f=b

f=c

f=d

a<b<c<d

Optimum point

Figure 1.2: Design space, objective functions surfaces, and optimum point.

of the optimization is to single out the best possible design. Thus, a criterion has to be
selected for comparing different designs. This criterion, when expressed as a function of
the design variables, is known as objective function. The objective function is in general
specified by physical or economical considerations. However, the selection of an objective
function is not trivial, because what is the optimal design with respect to a certain criterion
may be unacceptable with respect to another criterion. Typically there is a trade off
performance–cost, or performance–reliability, hence the selection of the objective function
is one of the most important decisions in the whole design process. If more than one
criterion has to be satisfied we have a multiobjective optimization problem, that may
be approximately solved considering a cost function which is a weighted sum of several
objective functions.

Given an objective function f(x), the locus of all points x such that f(x) = c forms a
hypersurface. For each value of c there is a different hypersurface. The set of all these
surfaces are called objective function surfaces.

Once the objective function surfaces are drawn, together with the constraint surfaces, the
optimization problem can be easily solved, at least in the case of a two dimensional decision
space, as shown in Figure 1.2. If the number of decision variables exceeds two or three,
this graphical approach is not viable and the problem has to be solved as a mathematical
problem. Note however that more general problems have similar geometrical properties of
two or three dimensional problems.

6 CHAPTER 1. INTRODUCTION

R1

R2

R3

R4

R5

Figure 1.3: Electrical bridge network.

1.3 Classification of optimization problems

Optimization problem can be classified in several ways.

• Existence of constraints. An optimization problem can be classified as a constrained
or an unconstrained one, depending upon the presence or not of constraints.

• Nature of the equations. Optimization problems can be classified as linear, quadratic,
polynomial, non-linear depending upon the nature of the objective functions and the
constraints. This classification is important, because computational methods are
usually selected on the basis of such a classification, i.e. the nature of the involved
functions dictates the type of solution procedure.

• Admissible values of the design variables. Depending upon the values permitted
for the design variables, optimization problems can be classified as integer or real
valued, and deterministic or stochastic.

1.4 Examples

Example 1 A travelling salesman has to cover n towns. He plans to start from a partic-
ular town numbered 1, visit each one of the other n − 1 towns, and return to the town 1.
The distance between town i and j is given by dij . How should he select the sequence in
which the towns are visited to minimize the total distance travelled?

Example 2 The bridge network in Figure 1.3 consists of five resistors Ri, i = 1, . . . , 5.
Let Ii be the current through the resistance Ri, find the values of Ri so that the total
dissipated power is minimum. The current Ii can vary between the lower limit Ii and the
upper limit Īi and the voltage drop Vi = RiIi must be equal to a constant ci.

Example 3 A manufacturing firm produces two products, A and B, using two limited
resources, 1 and 2. The maximum amount of resource 1 available per week is 1000 and the

1.4. EXAMPLES 7

Article type wi vi ci

1 4 9 5
2 8 7 6
3 2 4 3

Table 1.1: Properties of the articles to load.

maximum amount of resource 2 is 250. The production of one unit of A requires 1 unit of
resource 1 and 1/5 unit of resource 2. The production of one unit of B requires 1/2 unit
of resource 1 and 1/2 unit of resource 2. The unit cost of resource 1 is 1−0.0005u1, where
u1 is the number of units of resource 1 used. The unit cost of resource 2 is 3/4−0.0001u2 ,
where u2 is the number of units of resource 2 used. The selling price of one unit of A is

2 − 0.005xA − 0.0001xB

and the selling price of one unit of B is

4 − 0.002xA − 0.01xB ,

where xA and xB are the number of units of A and B sold. Assuming that the firm is able
to sell all manufactured units, maximize the weekly profit.

Example 4 A cargo load is to be prepared for three types of articles. The weight, wi,
volume, vi, and value, ci, of each article is given in Table 1.1.
Find the number of articles xi selected from type i so that the total value of the cargo is
maximized. The total weight and volume of the cargo cannot exceed 2000 and 2500 units
respectively.

Example 5 There are two types of gas molecules in a gaseous mixture at equilibrium. It
is known that the Gibbs free energy

G(x) = c1x
1 + c2x

2 + x1log(x1/xT) + x2log(x2/xT),

with xT = x1 + x2 and c1, c2 known parameters depending upon the temperature and
pressure of the mixture, has to be minimum in these conditions. The minimization of
G(x) is also subject to the mass balance equations:

x1ai1 + x2ai2 = bi,

for i = 1, . . . ,m, where m is the number of atomic species in the mixture, bi is the total
weight of atoms of type i, and aij is the number of atoms of type i in the molecule of type
j. Show that the problem of determining the equilibrium of the mixture can be posed as
an optimization problem.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Unconstrained
optimization

10 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

2.1 Introduction

Several engineering, economic and planning problems can be posed as optimization prob-
lems, i.e. as the problem of determining the points of minimum of a function (possibly in
the presence of conditions on the decision variables). Moreover, also numerical problems,
such as the problem of solving systems of equations or inequalities, can be posed as an
optimization problem.
We start with the study of optimization problems in which the decision variables are
defined in IRn: unconstrained optimization problems. More precisely we study the problem
of determining local minima for differentiable functions. Although these methods are
seldom used in applications, as in real problems the decision variables are subject to
constraints, the techniques of unconstrained optimization are instrumental to solve more
general problems: the knowledge of good methods for local unconstrained minimization is
a necessary pre-requisite for the solution of constrained and global minimization problems.
The methods that will be studied can be classified from various points of view. The
most interesting classification is based on the information available on the function to be
optimized, namely

• methods without derivatives (direct search, finite differences);

• methods based on the knowledge of the first derivatives (gradient, conjugate direc-
tions, quasi-Newton);

• methods based on the knowledge of the first and second derivatives (Newton).

2.2 Definitions and existence conditions

Consider the optimization problem:

Problem 1 Minimize
f(x) subject to x ∈ F

in which f : IRn → IR and1 F ⊂ IRn.

With respect to this problem we introduce the following definitions.

Definition 1 A point x ∈ F is a global minimum2 for the Problem 1 if

f(x) ≤ f(y)

for all y ∈ F .
A point x ∈ F is a strict (or isolated) global minimum (or minimiser) for the Problem 1
if

f(x) < f(y)
1The set F may be specified by equations of the form (1.1) and/or (1.2).
2Alternatively, the term global minimiser can be used to denote a point at which the function f attains

its global minimum.

2.2. DEFINITIONS AND EXISTENCE CONDITIONS 11

for all y ∈ F and y �= x.
A point x ∈ F is a local minimum (or minimiser) for the Problem 1 if there exists ρ > 0
such that

f(x) ≤ f(y)

for all y ∈ F such that ‖y − x‖ < ρ.
A point x ∈ F is a strict (or isolated) local minimum (or minimiser) for the Problem 1 if
there exists ρ > 0 such that

f(x) < f(y)

for all y ∈ F such that ‖y − x‖ < ρ and y �= x.

Definition 2 If x ∈ F is a local minimum for the Problem 1 and if x is in the interior
of F then x is an unconstrained local minimum of f in F .

The following result provides a sufficient, but not necessary, condition for the existence of
a global minimum for Problem 1.

Proposition 1 Let f : IRn → IR be a continuous function and let F ⊂ IRn be a compact
set3. Then there exists a global minimum of f in F .

In unconstrained optimization problems the set F coincides with IRn, hence the above
statement cannot be used to establish the existence of global minima. To address the
existence problem it is necessary to consider the structure of the level sets of the function
f . See also Section 1.2.3.

Definition 3 Let f : IRn → IR. A level set of f is any non-empty set described by

L(α) = {x ∈ IRn : f(x) ≤ α},
with α ∈ IR.

For convenience, if x0 ∈ IRn we denote with L0 the level set L(f(x0)). Using the concept
of level sets it is possible to establish a simple sufficient condition for the existence of
global solutions for an unconstrained optimization problem.

Proposition 2 Let f : IRn → IR be a continuous function. Assume there exists x0 ∈ IRn

such that the level set L0 is compact. Then there exists a point of global minimum of f in
IRn.

Proof. By Proposition 1 there exists a global minimum x� of f in L0, i.e. f(x�) ≤ f(x) for
all x ∈ L0. However, if x �∈ L0 then f(x) > f(x0) ≥ f(x�), hence x� is a global minimum
of f in IRn. �

It is obvious that the structure of the level sets of the function f plays a fundamental
role in the solution of Problem 1. The following result provides a necessary and sufficient
condition for the compactness of all level sets of f .

3A compact set is a bounded and closed set.

12 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

Proposition 3 Let f : IRn → IR be a continuous function. All level sets of f are compact
if and only if for any sequence {xk} one has

lim
k→∞

‖xk‖ = ∞ ⇒ lim
k→∞

f(xk) = ∞.

Remark. In general xk ∈ IRn, namely

xk =

⎡⎢⎢⎢⎢⎣
x1

k

x2
k
...

xn
k

⎤⎥⎥⎥⎥⎦ ,

i.e. we use superscripts to denote components of a vector. �

A function that satisfies the condition of the above proposition is said to be radially
unbounded.

Proof. We only prove the necessity. Suppose all level sets of f are compact. Then,
proceeding by contradiction, suppose there exist a sequence {xk} such that limk→∞ ‖xk‖ =
∞ and a number γ > 0 such that f(xk) ≤ γ < ∞ for all k. As a result

{xk} ⊂ L(γ).

However, by compactness of L(γ) it is not possible that limk→∞ ‖xk‖ = ∞. �

Definition 4 Let f : IRn → IR. A vector d ∈ IRn is said to be a descent direction for f
in x� if there exists δ > 0 such that

f(x� + λd) < f(x�),

for all λ ∈ (0, δ).

If the function f is differentiable it is possible to give a simple condition guaranteeing that
a certain direction is a descent direction.

Proposition 4 Let f : IRn → IR and assume4 ∇f exists and is continuous. Let x� and d
be given. Then, if ∇f(x�)′d < 0 the direction d is a descent direction for f at x�.

Proof. Note that ∇f(x�)′d is the directional derivative of f (which is differentiable by
hypothesis) at x� along d, i.e.

∇f(x�)′d = lim
λ→0+

f(x� + λd) − f(x�)
λ

,

4We denote with ∇f the gradient of the function f , i.e. ∇f = [∂f
∂x1 , · · · , ∂f

∂xn]′. Note that ∇f is a
column vector.

2.2. DEFINITIONS AND EXISTENCE CONDITIONS 13

f increasing

f(x) = f(x)*

descent direction

anti-gradient

f(x) = f(x) > f(x)*1

f(x) = f(x) > f(x)12

Figure 2.1: Geometrical interpretation of the anti-gradient.

and this is negative by hypothesis. As a result, for λ > 0 and sufficiently small

f(x� + λd) − f(x�) < 0,

hence the claim. �

The proposition establishes that if ∇f(x�)′d < 0 then for sufficiently small positive dis-
placements along d and starting at x� the function f is decreasing. It is also obvious that
if ∇f(x�)′d > 0, d is a direction of ascent, i.e. the function f is increasing for sufficiently
small positive displacements from x� along d. If ∇f(x�)′d = 0, d is orthogonal to ∇f(x�)
and it is not possible to establish, without further knowledge on the function f , what is
the nature of the direction d.
From a geometrical point of view (see also Figure 2.1), the sign of the directional derivative
∇f(x�)′d gives information on the angle between d and the direction of the gradient at
x�, provided ∇f(x�) �= 0. If ∇f(x�)′d > 0 the angle between ∇f(x�) and d is acute. If
∇f(x�)′d < 0 the angle between ∇f(x�) and d is obtuse. Finally, if ∇f(x�)′d = 0, and
∇f(x�) �= 0, ∇f(x�) and d are orthogonal. Note that the gradient ∇f(x�), if it is not
identically zero, is a direction orthogonal to the level surface {x : f(x) = f(x�)} and it is
a direction of ascent, hence the anti-gradient −∇f(x�) is a descent direction.

Remark. The scalar product x′y between the two vectors x and y can be used to define
the angle between x and y. For, define the angle between x and y as the number θ ∈ [0, π]
such that5

cos θ =
x′y

‖x‖E‖y‖E
.

If x′y = 0 one has cos θ = 0 and the vectors are orthogonal, whereas if x and y have the
same direction, i.e. x = λy with λ > 0, cos θ = 1. �

5‖x‖E denotes the Euclidean norm of the the vector x, i.e. ‖x‖E =
√

x′x.

14 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

We are now ready to state and prove some necessary conditions and some sufficient con-
ditions for a local minimum.

Theorem 1 [First order necessary condition] Let f : IRn → IR and assume ∇f exists and
is continuous. The point x� is a local minimum of f only if

∇f(x�) = 0.

Remark. A point x� such that ∇f(x�) = 0 is called a stationary point of f . �

Proof. If ∇f(x�) �= 0 the direction d = −∇f(x�) is a descent direction. Therefore, in a
neighborhood of x� there is a point x� + λd = x� − λ∇f(x�) such that

f(x� − λ∇f(x�)) < f(x�),

and this contradicts the hypothesis that x� is a local minimum. �

Theorem 2 [Second order necessary condition] Let f : IRn → IR and assume6 ∇2f exists
and is continuous. The point x� is a local minimum of f only if

∇f(x�) = 0

and
x′∇2f(x�)x ≥ 0

for all x ∈ IRn.

Proof. The first condition is a consequence of Theorem 1. Note now that, as f is two
times differentiable, for any x �= x� one has

f(x� + λx) = f(x�) + λ∇f(x�)′x +
1
2
λ2x′∇2f(x�)x + β(x�, λx),

where
lim
λ→0

β(x�, λx)
λ2‖x‖2

= 0,

or what is the same (note that x is fixed)

lim
λ→0

β(x�, λx)
λ2

= 0.

6We denote with ∇2f the Hessian matrix of the function f , i.e.⎡⎢⎣
∂2f

∂x1∂x1 · · · ∂2f
∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1 · · · ∂2f
∂xn∂xn

⎤⎥⎦ .

Note that ∇2f is a square matrix and that, under suitable regularity conditions, the Hessian matrix is
symmetric.

2.2. DEFINITIONS AND EXISTENCE CONDITIONS 15

Moreover, the condition ∇f(x�) = 0 yields

f(x� + λx) − f(x�)
λ2

=
1
2
x′∇2f(x�)x +

β(x�, λx)
λ2

. (2.1)

However, as x� is a local minimum, the left hand side of equation (2.1) must be non-
negative for all λ sufficiently small, hence

1
2
x′∇2f(x�)x +

β(x�, λx)
λ2

≥ 0,

and
lim
λ→0

(
1
2
x′∇2f(x�)x +

β(x�, λx)
λ2

)
=

1
2
x′∇2f(x�)x ≥ 0,

which proves the second condition. �

Theorem 3 (Second order sufficient condition) Let f : IRn → IR and assume ∇2f
exists and is continuous. The point x� is a strict local minimum of f if

∇f(x�) = 0

and
x′∇2f(x�)x > 0

for all non-zero x ∈ IRn.

Proof. To begin with, note that as ∇2f(x�) > 0 and ∇2f is continuous, then there is a
neighborhood Ω of x� such that for all y ∈ Ω

∇2f(y) > 0.

Consider now the Taylor series expansion of f around the point x�, i.e.

f(y) = f(x�) + ∇f(x�)′(y − x�) +
1
2
(y − x�)′∇2f(ξ)(y − x�),

where ξ = x� + θ(y − x�), for some θ ∈ [0, 1]. By the first condition one has

f(y) = f(x�) +
1
2
(y − x�)′∇2f(ξ)(y − x�),

and, for any y ∈ Ω such that y �= x�,

f(y) > f(x�),

which proves the claim. �

The above results can be easily modified to derive necessary conditions and sufficient con-
ditions for a local maximum. Moreover, if x� is a stationary point and the Hessian matrix

16 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

−2

−1

0

1

2

−2

−1

0

1

2
−4

−3

−2

−1

0

1

2

3

4

Figure 2.2: A saddle point in IR2.

∇2f(x�) is indefinite, the point x� is neither a local minimum neither a local maximum.
Such a point is called a saddle point (see Figure 2.2 for a geometrical illustration).
If x� is a stationary point and ∇2f(x�) is semi-definite it is not possible to draw any
conclusion on the point x� without further knowledge on the function f . Nevertheless, if
n = 1 and the function f is infinitely times differentiable it is possible to establish the
following necessary and sufficient condition.

Proposition 5 Let f : IR → IR and assume f is infinitely times differentiable. The point
x� is a local minimum if and only if there exists an even integer r > 1 such that

dkf(x�)
dxk

= 0

for k = 1, 2, . . . , r − 1 and
drf(x�)

dxr
> 0.

Necessary and sufficient conditions for n > 1 can be only derived if further hypotheses on
the function f are added, as shown for example in the following fact.

Proposition 6 (Necessary and sufficient condition for convex functions) Let f :
IRn → IR and assume ∇f exists and it is continuous. Suppose f is convex, i.e.

f(y) − f(x) ≥ ∇f(x)′(y − x) (2.2)

for all x ∈ IRn and y ∈ IRn. The point x� is a global minimum if and only if ∇f(x�) = 0.

2.3. GENERAL PROPERTIES OF MINIMIZATION ALGORITHMS 17

Proof. The necessity is a consequence of Theorem 1. For the sufficiency note that, by
equation (2.2), if ∇f(x�) = 0 then

f(y) ≥ f(x�),

for all y ∈ IRn. �

From the above discussion it is clear that to establish the property that x�, satisfying
∇f(x�) = 0, is a global minimum it is enough to assume that the function f has the
following property: for all x and y such that

∇f(x)′(y − x) ≥ 0

one has
f(y) ≥ f(x).

A function f satisfying the above property is said pseudo-convex. Note that a differentiable
convex function is also pseudo-convex, but the opposite is not true. For example, the
function x + x3 is pseudo-convex but it is not convex. Finally, if f is strictly convex or
strictly pseudo-convex the global minimum (if it exists) is also unique.

2.3 General properties of minimization algorithms

Consider the problem of minimizing the function f : IRn → IR and suppose that ∇f and
∇2f exist and are continuous. Suppose that such a problem has a solution, and moreover
that there exists x0 such that the level set

L(f(x0)) = {x ∈ IRn : f(x) ≤ f(x0)}
is compact.
General unconstrained minimization algorithms allow only to determine stationary points
of f , i.e. to determine points in the set

Ω = {x ∈ IRn : ∇f(x) = 0}.
Moreover, for almost all algorithms, it is possible to exclude that the points of Ω yielded
by the algorithm are local maxima. Finally, some algorithms yield points of Ω that satisfy
also the second order necessary conditions.

2.3.1 General unconstrained minimization algorithm

An algorithm for the solution of the considered minimization problem is a sequence {xk},
obtained starting from an initial point x0, having some convergence properties in relation
with the set Ω. Most of the algorithms that will be studied in this notes can be described
in the following general way.

1. Fix a point x0 ∈ IRn and set k = 0.

18 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

2. If xk ∈ Ω STOP.

3. Compute a direction of research dk ∈ IRn.

4. Compute a step αk ∈ IR along dk.

5. Let xk+1 = xk + αkdk. Set k = k + 1 and go back to 2.

The existing algorithms differ in the way the direction of research dk is computed and
on the criteria used to compute the step αk. However, independently from the particular
selection, it is important to study the following issues:

• the existence of accumulation points for the sequence {xk};

• the behavior of such accumulation points in relation with the set Ω;

• the speed of convergence of the sequence {xk} to the points of Ω.

2.3.2 Existence of accumulation points

To make sure that any subsequence of {xk} has an accumulation point it is necessary to
assume that the sequence {xk} remains bounded, i.e. that there exists M > 0 such that
‖xk‖ < M for any k. If the level set L(f(x0)) is compact, the above condition holds if
{xk} ∈ L(f(x0)). This property, in turn, is guaranteed if

f(xk+1) < f(xk),

for any k such that xk �∈ Ω. The algorithms that satisfy this property are denominated
descent methods. For such methods , if L(f(x0)) is compact and if ∇f is continuous one
has

• {xk} ∈ L(f(x0)) and any subsequence of {xk} admits a subsequence converging to
a point of L(f(x0));

• the sequence {f(xk)} has a limit, i.e. there exists f̄ ∈ IR such that

lim
k→∞

f(xk) = f̄ ;

• there always exists an element of Ω in L(f(x0)). In fact, as f has a minimum in
L(f(x0)), this minimum is also a minimum of f in IRn. Hence, by the assumptions
of ∇f , such a minimum must be a point of Ω.

Remark. To guarantee the descent property it is necessary that the research directions dk

be directions of descent. This is true if

∇f(xk)′dk < 0,

2.3. GENERAL PROPERTIES OF MINIMIZATION ALGORITHMS 19

for all k. Under this condition there exists an interval (0, α�] such that

f(xk + αdk) < f(xk),

for any α ∈ (0, α�]. �

Remark. The existence of accumulation points for the sequence {xk} and the convergence
of the sequence {f(xk)} do not guarantee that the accumulation points of {xk} are local
minima of f or stationary points. To obtain this property it is necessary to impose further
restrictions on the research directions dk and on the steps αk. �

2.3.3 Condition of angle

The condition which is in general imposed on the research directions dk is the so-called
condition of angle, that can be stated as follows.

Condition 1 There exists ε > 0, independent from k, such that

∇f(xk)′dk ≤ −ε‖∇f(xk)‖‖dk‖,
for any k.

From a geometric point of view the above condition implies that the cosine of the angle
between dk and −∇f(xk) is larger than a certain quantity. This condition is imposed to
avoid that, for some k, the research direction is orthogonal to the direction of the gradient.
Note moreover that, if the angle condition holds, and if ∇f(xk) �= 0 then dk is a descent
direction. Finally, if ∇f(xk) �= 0, it is always possible to find a direction dk such that the
angle condition holds. For example, the direction dk = −∇f(xk) is such that the angle
condition is satisfied with ε = 1.

Remark. Let {Bk} be a sequence of matrices such that

mI ≤ Bk ≤ MI,

for some 0 < m < M , and for any k, and consider the directions

dk = −Bk∇f(xk).

Then a simple computation shows that the angle condition holds with ε = m/M . �

The angle condition imposes a constraint only on the research directions dk. To make
sure that the sequence {xk} converges to a point in Ω it is necessary to impose further
conditions on the step αk, as expressed in the following statements.

Theorem 4 Let {xk} be the sequence obtained by the algorithm

xk+1 = xk + αkdk,

for k ≥ 0. Assume that

20 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

(H1) ∇f is continuous and the level set L(f(x0)) is compact.

(H2) There exists ε > 0 such that

∇f(xk)′dk ≤ −ε‖∇f(xk)‖‖dk‖,

for any k ≥ 0.

(H3) f(xk+1) < f(xk) for any k ≥ 0.

(H4) The property

lim
k→∞

∇f(xk)′dk

‖dk‖ = 0

holds.

Then

(C1) {xk} ∈ L(f(x0)) and any subsequence of {xk} has an accumulation point.

(C2) {f(xk)} is monotonically decreasing and there exists f̄ such that

lim
k→∞

f(xk) = f̄ .

(C3) {∇f(xk)} is such that
lim

k→∞
‖∇f(xk)‖ = 0.

(C4) Any accumulation point x̄ of {xk} is such that ∇f(x̄) = 0.

Proof. Conditions (C1) and (C2) are a simple consequence of (H1) and (H3). Note now
that (H2) implies

ε‖∇f(xk)‖ ≤ |∇f(xk)′dk|
‖dk‖ ,

for all k. As a result, and by (H4),

lim
k→∞

ε‖∇f(xk)‖ ≤ lim
k→∞

|∇f(xk)′dk|
‖dk‖ = 0

hence (C3) holds. Finally, let x̄ be an accumulation point of the sequence {xk}, i.e. there
is a subsequence that converges to x̄. For such a subsequence, and by continuity of f , one
has

lim
k→∞

∇f(xk) = ∇f(x̄),

and, by (C3),
∇f(x̄) = 0,

which proves (C4). �

2.3. GENERAL PROPERTIES OF MINIMIZATION ALGORITHMS 21

Remark. Theorem 4 does not guarantee the convergence of the sequence {xk} to a unique
accumulation point. Obviously {xk} has a unique accumulation point if either Ω∩L(f(x0))
contains only one point or x, y ∈ Ω ∩ L(f(x0)), with x �= y implies f(x) �= f(y). Finally,
if the set Ω ∩ L(f(x0)) contains a finite number of points, a sufficient condition for the
existence of a unique accumulation point is

lim
k→∞

‖xk+1 − xk‖ = 0.

�

Remark. The angle condition can be replaced by the following one. There exists η > 0
and q > 0, both independent from k, such that

∇f(xk)′dk ≤ −η‖∇f(xk)‖q‖dk‖.
�

The result illustrated in Theorem 4 requires the fulfillment of the angle condition or of a
similar one, i.e. of a condition involving ∇f . In many algorithms that do not make use
of the gradient it may be difficult to check the validity of the angle condition, hence it is
necessary to use different conditions on the research directions. For example, it is possible
to replace the angle condition with a property of linear independence of the research
directions.

Theorem 5 Let {xk} be the sequence obtained by the algorithm

xk+1 = xk + αkdk,

for k ≥ 0. Assume that

• ∇2f is continuous and the level set L(f(x0)) is compact.

• There exist σ > 0, independent from k, and k0 > 0 such that, for any k ≥ k0 the
matrix Pk composed of the columns

dk

‖dk‖ ,
dk+1

‖dk+1‖ , . . . ,
dk+n−1

‖dk+n−1‖ ,

is such that
|detPk| ≥ σ.

• limk→∞ ‖xk+1 − xk‖ = 0.

• f(xk+1) < f(xk) for any k ≥ 0.

• The property

lim
k→∞

∇f(xk)′dk

‖dk‖ = 0

holds.

22 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

Then

• {xk} ∈ L(f(x0)) and any subsequence of {xk} has an accumulation point.

• {f(xk)} is monotonically decreasing and there exists f̄ such that

lim
k→∞

f(xk) = f̄ .

• Any accumulation point x̄ of {xk} is such that ∇f(x̄) = 0.

Moreover, if the set Ω ∩ L(f(x0)) is composed of a finite number of points, the sequence
{xk} has a unique accumulation point.

2.3.4 Speed of convergence

Together with the property of convergence of the sequence {xk} it is important to study
also the speed of convergence. To study such a notion it is convenient to assume that {xk}
converges to a point x�.
If there exists a finite k such that xk = x� then we say that the sequence {xk} has finite
convergence. Note that if {xk} is generated by an algorithm, there is a stopping condition
that has to be satisfied at step k.
If xk �= x� for any finite k, it is possible (and convenient) to study the asymptotic properties
of {xk}. One criterion to estimate the speed of convergence is based on the behavior of
the error Ek = ‖xk − x�‖, and in particular on the relation between Ek+1 and Ek.
We say that {xk} has speed of convergence of order p if

lim
k→∞

(
Ek+1

Ep
k

)
= Cp

with p ≥ 1 and 0 < Cp < ∞. Note that if {xk} has speed of convergence of order p then

lim
k→∞

(
Ek+1

Eq
k

)
= 0,

if 1 ≤ q < p, and

lim
k→∞

(
Ek+1

Eq
k

)
= ∞,

if q > p. Moreover, from the definition of speed of convergence, it is easy to see that if
{xk} has speed of convergence of order p then, for any ε > 0 there exists k0 such that

Ek+1 ≤ (Cp + ε)Ep
k ,

for any k > k0.
In the cases p = 1 or p = 2 the following terminology is often used. If p = 1 and 0 < C1 ≤ 1
the speed of convergence is linear; if p = 1 and C1 > 1 the speed of convergence is sublinear;
if

lim
k→∞

(Ek+1

Ek

)
= 0

2.4. LINE SEARCH 23

the speed of convergence is superlinear, and finally if p = 2 the speed of convergence is
quadratic.
Of special interest in optimization is the case of superlinear convergence, as this is the kind
of convergence that can be established for the efficient minimization algorithms. Note that
if xk has superlinear convergence to x� then

lim
k→∞

‖xk+1 − xk‖
‖xk − x�‖ = 1.

Remark. In some cases it is not possible to establish the existence of the limit

lim
k→∞

(
Ek+1

Eq
k

)
.

In these cases an estimate of the speed of convergence is given by

Qp = lim sup
k→∞

(
Ek+1

Eq
k

)
.

�

2.4 Line search

A line search is a method to compute the step αk along a given direction dk. The choice
of αk affects both the convergence and the speed of convergence of the algorithm. In any
line search one considers the function of one variable φ : IR → IR defined as

φ(α) = f(xk + αdk) − f(xk).

The derivative of φ(α) with respect to α is given by

φ̇(α) = ∇f(xk + αdk)′dk

provided that ∇f is continuous. Note that ∇f(xk + αdk)′dk describes the slope of the
tangent to the function φ(α), and in particular

φ̇(0) = ∇f(xk)′dk

coincides with the directional derivative of f at xk along dk.
From the general convergence results described, we conclude that the line search has to
enforce the following conditions

f(xk+1) < f(xk)

lim
k→∞

∇f(xk)′dk

‖dk‖ = 0

24 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

and, whenever possible, also the condition

lim
k→∞

‖xk+1 − xk‖ = 0.

To begin with, we assume that the directions dk are such that

∇f(xk)′dk < 0

for all k, i.e. dk is a descent direction, and that it is possible to compute, for any fixed x,
both f and ∇f . Finally, we assume that the level set L(f(x0)) is compact.

2.4.1 Exact line search

The exact line search consists in finding αk such that

φ(αk) = f(xk + αkdk) − f(xk) ≤ f(xk + αdk) − f(xk) = φ(α)

for any α ≥ 0. Note that, as dk is a descent direction and the set

{α ∈ IR+ : φ(α) ≤ φ(0)}
is compact, because of compactness of L(f(x0)), there exists an αk that minimizes φ(α).
Moreover, for such αk one has

φ̇(αk) = ∇f(xk + αkdk)′dk = 0,

i.e. if αk minimizes φ(α) the gradient of f at xk + αkdk is orthogonal to the direction dk.
From a geometrical point of view, if αk minimizes φ(α) then the level surface of f through
the point xk + αkdk is tangent to the direction dk at such a point. (If there are several
points of tangency, αk is the one for which f has the smallest value).
The search of αk that minimizes φ(α) is very expensive, especially if f is not convex. More-
over, in general, the whole minimization algorithm does not gain any special advantage
from the knowledge of such optimal αk. It is therefore more convenient to use approximate
methods, i.e. methods which are computationally simple and which guarantee particular
convergence properties. Such methods are aimed at finding an interval of acceptable values
for αk subject to the following two conditions

• αk has to guarantee a sufficient reduction of f ;

• αk has to be sufficiently distant from 0, i.e. xk + αkdk has to be sufficiently away
from xk.

2.4.2 Armijo method

Armijo method was the first non-exact linear search method.
Let a > 0, σ ∈ (0, 1) and γ ∈ (0, 1/2) be given and define the set of points

A = {α ∈ R : α = aσj , j = 0, 1, . . .}.

2.4. LINE SEARCH 25

α

φ(α)

φ(0)α
.

γ φ(0)α
.

aaσ
φ(0)

Figure 2.3: Geometrical interpretation of Armijo method.

Armijo method consists in finding the largest α ∈ A such that

φ(α) = f(xk + αdk) − f(xk) ≤ γα∇f(xk)′dk = γαφ̇(0).

Armijo method can be implemented using the following (conceptual) algorithm.

Step 1. Set α = a.

Step 2. If
f(xk + αdk) − f(xk) ≤ γα∇f(xk)′dk

set αk = α and STOP. Else go to Step 3.

Step 3. Set α = σα, and go to Step 2.

From a geometric point of view (see Figure 2.3) the condition in Step 2 requires that αk

is such that φ(αk) is below the straight line passing through the point (0, φ(0)) and with
slope γφ̇(0). Note that, as γ ∈ (0, 1/2) and φ̇(0) < 0, such a straight line has a slope
smaller than the slope of the tangent at the curve φ(α) at the point (0, φ(0)).
For Armijo method it is possible to prove the following convergence result.

Theorem 6 Let f : IRn → IR and assume ∇f is continuous and L(f(x0)) is compact.
Assume ∇f(xk)′dk < 0 for all k and there exist C1 > 0 and C2 > 0 such that

C1 ≥ ‖dk‖ ≥ C2‖∇f(xk)‖q,

for some q > 0 and for all k.
Then Armijo method yields in a finite number of iterations a value of αk > 0 satisfying
the condition in Step 2. Moreover, the sequence obtained setting xk+1 = xk + αkdk is
such that

f(xk+1) < f(xk),

26 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

for all k, and

lim
k→∞

∇f(xk)′dk

‖dk‖ = 0.

Proof. We only prove that the method cannot loop indefinitely between Step 2 and
Step 3. In fact, if this is the case, then the condition in Step 2 will never be satisfied,
hence

f(xk + aσjdk) − f(xk)
aσj

> γ∇f(xk)′dk.

Note now that σj → 0 as j → ∞, and the above inequality for j → ∞ is

∇f(xk)′dk > γ∇f(xk)′dk,

which is not possible since γ ∈ (0, 1/2) and ∇f(xk)′dk �= 0. �

Remark. It is interesting to observe that in Theorem 6 it is not necessary to assume that
xk+1 = xk + αkdk. It is enough that xk+1 is such that

f(xk+1) ≤ f(xk + αkdk),

where αk is generated using Armijo method. This implies that all acceptable values of α
are those such that

f(xk + αdk) ≤ f(xk + αkdk).

As a result, Theorem 6 can be used to prove also the convergence of an algorithm based
on the exact line search. �

2.4.3 Goldstein conditions

The main disadvantage of Armijo method is in the fact that, to find αk, all points in the
set A, starting from the point α = a, have to be tested till the condition in Step 2 is
fulfilled. There are variations of the method that do not suffer from this disadvantage. A
criterion similar to Armijo’s, but that allows to find an acceptable αk in one step, is based
on the so-called Goldstein conditions.
Goldstein conditions state that given γ1 ∈ (0, 1) and γ2 ∈ (0, 1) such that γ1 < γ2, αk is
any positive number such that

f(xk + αkdk) − f(xk) ≤ αkγ1∇f(xk)′dk

i.e. there is a sufficient reduction in f , and

f(xk + αkdk) − f(xk) ≥ αkγ2∇f(xk)′dk

i.e. there is a sufficient distance between xk and xk+1.
From a geometric point of view (see Figure 2.4) this is equivalent to select αk as any point
such that the corresponding value of f is included between two straight lines, of slope

2.4. LINE SEARCH 27

α

φ(α)

φ(0)

φ(0)α
.

γ φ(0)α
.

1

α

γ φ(0)α
.

2

α

Figure 2.4: Geometrical interpretation of Goldstein method.

γ1∇f(xk)′dk and γ2∇f(xk)′dk, respectively, and passing through the point (0, φ(0)). As
0 < γ1 < γ2 < 1 it is obvious that there exists always an interval I = [α,α] such that
Goldstein conditions hold for any α ∈ I.
Note that, a result similar to Theorem 6, can be also established if the sequence {xk} is
generated using Goldstein conditions.
The main disadvantage of Armijo and Goldstein methods is in the fact that none of
them impose conditions on the derivative of the function φ(α) in the point αk, or what
is the same on the value of ∇f(xk+1)′dk. Such extra conditions are sometimes useful
in establishing convergence results for particular algorithms. However, for simplicity, we
omit the discussion of these more general conditions (known as Wolfe conditions).

2.4.4 Line search without derivatives

It is possible to construct methods similar to Armijo’s or Goldstein’s also in the case that
no information on the derivatives of the function f is available.
Suppose, for simplicity, that ‖dk‖ = 1, for all k, and that the sequence {xk} is generated
by

xk+1 = xk + αkdk.

If ∇f is not available it is not possible to decide a priori if the direction dk is a descent
direction, hence it is necessary to consider also negative values of α.
We now describe the simplest line search method that can be constructed with the con-
sidered hypothesis. This method is a modification of Armijo method and it is known as
parabolic search.
Given λ0 > 0, σ ∈ (0, 1/2), γ > 0 and ρ ∈ (0, 1). Compute αk and λk such that one of the
following conditions hold.

Condition (i)

28 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

• λk = λk−1;

• αk is the largest value in the set

A = {α ∈ IR : α = ±σj, j = 0, 1, . . .}

such that
f(xk + αkdk) ≤ f(xk) − γα2

k,

or, equivalently, φ(αk) ≤ −γα2
k.

Condition (ii)

• αk = 0, λk ≤ ρλk−1;

• min (f(xk + λkdk), f(xk − λkdk)) ≥ f(xk) − γλ2
k.

At each step it is necessary to satisfy either Condition (i) or Condition (ii). Note that this
is always possible for any dk �= 0. Condition (i) requires that αk is the largest number
in the set A such that f(xk + αkdk) is below the parabola f(xk) − γα2. If the function
φ(α) has a stationary point for α = 0 then there may be no α ∈ A such that Condition
(i) holds. However, in this case it is possible to find λk such that Condition (ii) holds. If
Condition (ii) holds then αk = 0, i.e. the point xk remains unchanged and the algorithms
continues with a new direction dk+1 �= dk.
For the parabolic search algorithm it is possible to prove the following convergence result.

Theorem 7 Let f : IRn → IR and assume ∇f is continuous and L(f(x0)) is compact.
If αk is selected following the conditions of the parabolic search and if xk+1 = xk + αkdk,
with ‖dk‖ = 1 then the sequence {xk} is such that

f(xk+1) ≤ f(xk)

for all k,
lim

k→∞
∇f(xk)′dk = 0

and
lim

k→∞
‖xk+1 − xk‖ = 0.

Proof. (Sketch) Note that Condition (i) implies f(xk+1) < f(xk), whereas Condition (ii)
implies f(xk+1) = f(xk). Note now that if Condition (ii) holds for all k ≥ k̄, then αk = 0
for all k ≥ k̄, i.e. ‖xk+1 − xk‖ = 0. Moreover, as λk is reduced at each step, necessarily
∇f(xk̄)

′d̄ = 0, where d̄ is a limit of the sequence {dk}. �

2.5. THE GRADIENT METHOD 29

2.4.5 Implementation of a line search algorithm

On the basis of the conditions described so far it is possible to construct algorithms that
yield αk in a finite number of steps. One such an algorithm can be described as follows.
(For simplicity we assume that ∇f is known.)

• Initial data. xk, f(xk), ∇f(xk), α and α.

• Initial guess for α. A possibility is to select α as the point in which a parabola
through (0, φ(0)) with derivative φ̇(0) for α = 0 takes a pre-specified minimum value
f�. Initially, i.e. for k = 0, f� has to be selected by the designer. For k > 0 it is
possible to select f� such that

f(xk) − f� = f(xk−1) − f(xk).

The resulting α is

α� = −2
f(xk) − f�

∇f(xk)′dk
.

In some algorithms it is convenient to select α ≤ 1, hence the initial guess for α will
be min (1, α�) .

• Computation of αk. A value for αk is computed using a line search method. If
αk ≤ α the direction dk may not be a descent direction. If αk ≥ α the level set
L(f(xk)) may not be compact. If αk �∈ [α,α] the line search fails, and it is necessary
to select a new research direction dk. Otherwise the line search terminates and
xk+1 = xk + αkdk.

2.5 The gradient method

The gradient method consists in selecting, as research direction, the direction of the anti-
gradient at xk, i.e.

dk = −∇f(xk),

for all k. This selection is justified noting that the direction7

− ∇f(xk)
‖∇f(xk)‖E

is the direction that minimizes the directional derivative, among all direction with unitary
Euclidean norm. In fact, by Schwartz inequality, one has

|∇f(xk)′d| ≤ ‖d‖E‖∇f(xk)‖E ,

and the equality sign holds if and only if d = λ∇f(xk), with λ ∈ IR. As a consequence,
the problem

min
‖d‖E=1

∇f(xk)′d

7We denote with ‖v‖E the Euclidean norm of the vector v, i.e. ‖v‖E =
√

v′v.

30 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

has the solution d� = − ∇f(xk)
‖∇f(xk)‖E

. For this reason, the gradient method is sometimes
called the method of the steepest descent. Note however that the (local) optimality of
the direction −∇f(xk) depends upon the selection of the norm, and that with a proper
selection of the norm, any descent direction can be regarded as the steepest descent.
The real interest in the direction −∇f(xk) rests on the fact that, if ∇f is continuous, then
the former is a continuous descent direction, which is zero only if the gradient is zero, i.e.
at a stationary point.
The gradient algorithm can be schematized has follows.

Step 0. Given x0 ∈ IRn.

Step 1. Set k = 0.

Step 2. Compute ∇f(xk). If ∇f(xk) = 0 STOP. Else set dk = −∇f(xk).

Step 3. Compute a step αk along the direction dk with any line search method such
that

f(xk + αkdk) ≤ f(xk)

and

lim
k→∞

∇f(xk)′dk

‖dk‖ = 0.

Step 4. Set xk+1 = xk + αkdk, k = k + 1. Go to Step 2.

By the general results established in Theorem 4, we have the following fact regarding the
convergence properties of the gradient method.

Theorem 8 Consider f : IRn → IR. Assume ∇f is continuous and the level set L(f(x0))
is compact. Then any accumulation point of the sequence {xk} generated by the gradient
algorithm is a stationary point of f .

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Figure 2.5: The function
√

ξ
ξ − 1
ξ + 1

.

2.6. NEWTON’S METHOD 31

To estimate the speed of convergence of the method we can consider the behavior of the
method in the minimization of a quadratic function, i.e. in the case

f(x) =
1
2
x′Qx + c′x + d,

with Q = Q′ > 0. In such a case it is possible to obtain the following estimate

‖xk+1 − x�‖ ≤
√

λM

λm

√
λM
λm

− 1√
λM
λm

+ 1
‖xk − x�‖,

where λM ≥ λm > 0 are the maximum and minimum eigenvalue of Q, respectively. Note
that the above estimate is exact for some initial points x0. As a result, if λM �= λm the
gradient algorithm has linear convergence, however, if λM/λm is large the convergence can
be very slow (see Figure 2.5).
Finally, if λM/λm = 1 the gradient algorithm converges in one step. From a geometric
point of view the ratio λM/λm expresses the ratio between the lengths of the maximum
and the minimum axes of the ellipsoids, that constitute the level surfaces of f . If this ratio
is big there are points from which the gradient algorithm converges very slowly, see e.g.
Figure 2.6.

.. ..
Figure 2.6: Behavior of the gradient algorithm.

In the non-quadratic case, the performance of the gradient method are unacceptable,
especially if the level surfaces of f have high curvature.

2.6 Newton’s method

Newton’s method, with all its variations, is the most important method in unconstrained
optimization. Let f : IRn → IR be a given function and assume that ∇2f is continuous.
Newton’s method for the minimization of f can be derived assuming that, given xk, the
point xk+1 is obtained minimizing a quadratic approximation of f . As f is two times
differentiable, it is possible to write

f(xk + s) = f(xk) + ∇f(xk)′s +
1
2
s′∇2f(xk)s + β(xk, s),

in which
lim

‖s‖→0

β(xk, s)
‖s‖2

= 0.

32 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

For ‖s‖ sufficiently small, it is possible to approximate f(xk + s) with its quadratic ap-
proximation

q(s) = f(xk) + ∇f(xk)′s +
1
2
s′∇2f(xk)s.

If ∇2f(xk) > 0, the value of s minimizing q(s) can be obtained setting to zero the gradient
of q(s), i.e.

∇q(s) = ∇f(xk) + ∇2f(xk)s = 0,

yielding

s = −
[
∇2f(xk)

]−1 ∇f(xk).

The point xk+1 is thus given by

xk+1 = xk −
[
∇2f(xk)

]−1 ∇f(xk).

Finally, Newton’s method can be described by the simple scheme.

Step 0. Given x0 ∈ IRn.

Step 1. Set k = 0.

Step 2. Compute

s = −
[
∇2f(xk)

]−1 ∇f(xk).

Step 3. Set xk+1 = xk + s, k = k + 1. Go to Step 2.

Remark. An equivalent way to introduce Newton’s method for unconstrained optimization
is to regard the method as an algorithm for the solution of the system of n non-linear
equations in n unknowns given by

∇f(x) = 0.

For, consider, in general, a system of n equations in n unknown

F (x) = 0,

with x ∈ IRn and F : IRn → IRn. If the Jacobian matrix of F exists and is continuous,
then one can write

F (x + s) = F (x) +
∂F

∂x
(x)s + γ(x, s),

with

lim
‖s‖→0

γ(x, s)
‖s‖ = 0.

Hence, given a point xk we can determine xk+1 = xk + s setting s such that

F (xk) +
∂F

∂x
(xk)s = 0.

2.6. NEWTON’S METHOD 33

If ∂F
∂x (xk) is invertible we have

s = −
[
∂F

∂x
(xk)
]−1

F (xk),

hence Newton’s method for the solution of the system of equation F (x) = 0 is

xk+1 = xk −
[
∂F

∂x
(xk)
]−1

F (xk), (2.3)

with k = 0, 1, Note that, if F (x) = ∇f , then the above iteration coincides with
Newton’s method for the minimization of f . �

To study the convergence properties of Newton’s method we can consider the algorithm for
the solution of a set of non-linear equations, summarized in equation (2.3). The following
local convergence result, providing also an estimate of the speed of convergence, can be
proved.

Theorem 9 Let F : IRn → IRn and assume that F is continuously differentiable in an
open set D ⊂ IRn. Suppose moreover that

• there exists x� ∈ D such that F (x�) = 0;

• the Jacobian matrix ∂F
∂x (x�) is non-singular;

• there exists L > 0 such that8∥∥∥∥∂F

∂x
(z) − ∂F

∂x
(y)
∥∥∥∥ ≤ L‖z − y‖,

for all z ∈ D and y ∈ D.

Then there exists and open set B ⊂ D such that for any x0 ∈ B the sequence {xk} generated
by equation (2.3) remains in B and converges to x� with quadratic speed of convergence.

The result in Theorem 9 can be easily recast as a result for the convergence of Newton’s
method for unconstrained optimization. For, it is enough to note that all hypotheses
on F and ∂F

∂x translate into hypotheses on ∇f and ∇2f . Note however that the result
is only local and does not allow to distinguish between local minima and local maxima.
To construct an algorithm for which the sequence {xk} does not converge to maxima,
and for which global convergence, i.e. convergence from points outside the set B, holds,
it is possible to modify Newton’s method considering a line search along the direction
dk = − [∇2f(xk)

]−1 ∇f(xk). As a result, the modified Newton’s algorithm

xk+1 = xk − αk

[
∇2f(xk)

]−1 ∇f(xk), (2.4)

8This is equivalent to say that ∂F
∂x

(x) is Lipschitz continuous in D.

34 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

in which αk is computed using any line search algorithm, is obtained. If ∇2f is uni-
formly positive definite, and this implies that the function f is convex, the direction
dk = − [∇2f(xk)

]−1 ∇f(xk) is a descent direction satisfying the condition of angle. Hence,
by Theorem 4, we can conclude the (global) convergence of the algorithm (2.4). Moreover,
it is possible to prove that, for k sufficiently large, the step αk = 1 satisfies the conditions
of Armijo method, hence the sequence {xk} has quadratic speed of convergence.

Remark. If the function to be minimized is quadratic, i.e.

f(x) =
1
2
x′Qx + c′x + d,

and if Q > 0, Newton’s method yields the (global) minimum of f in one step. �

In general, i.e. if ∇2f(x) is not positive definite for all x, Newton’s method may be in-
applicable because either ∇2f(xk) is not invertible, or dk = − [∇2f(xk)

]−1 ∇f(xk) is not
a descent direction. In these cases it is necessary to further modify Newton’s method.
Diverse criteria have been proposed, most of which rely on the substitution of the matrix
∇2f(xk) with a matrix Mk > 0 which is close in some sense to ∇2f(xk). A simpler
modification can be obtained using the direction dk = −∇f(xk) whenever the direction
dk = − [∇2f(xk)

]−1 ∇f(xk) is not a descent direction. This modification yields the fol-
lowing algorithm.

Step 0. Given x0 ∈ IRn and ε > 0.

Step 1. Set k = 0.

Step 2. Compute ∇f(xk). If ∇f(xk) = 0 STOP. Else compute ∇2f(xk). If ∇2f(xk)
is singular set dk = −∇f(xk) and go to Step 6.

Step 3. Compute Newton direction s solving the (linear) system

∇2f(xk)s = −∇f(xk).

Step 4. If
|∇f(xk)′s| < ε‖∇f(xk)‖‖s‖

set dk = −∇f(xk) and go to Step 6.

Step 5. If
∇f(xk)′s < 0

set dk = s; if
∇f(xk)′s > 0

set dk = −s.

Step 6. Make a line search along dk assuming as initial estimate α = 1. Compute
xk+1 = xk + αkdk, set k = k + 1 and go to Step 2.

2.6. NEWTON’S METHOD 35

The above algorithm is such that the direction dk satisfies the condition of angle, i.e.

∇f(xk)′dk ≤ −ε‖∇f(xk)‖‖dk‖,

for all k. Hence, the convergence is guaranteed by the general result in Theorem 4.
Moreover, if ε is sufficiently small, if the hypotheses of Theorem 9 hold, and if the line
search is performed with Armijo method and with the initial guess α = 1, then the above
algorithm has quadratic speed of convergence.
Finally, note that it is possible to modify Newton’s method, whenever it is not applicable,
without making use of the direction of the anti-gradient. We now briefly discuss two such
modifications.

2.6.1 Method of the trust region

A possible approach to modify Newton’s method to yield global convergence is to set the
direction dk and the step αk in such a way to minimize the quadratic approximation of
f on a sphere centered at xk and of radius ak. Such a sphere is called trust region. This
name refers to the fact that, in a small region around xk we are confident (we trust) that
the quadratic approximation of f is a good approximation.
The method of the trust region consists in selecting xk+1 = xk+sk, where sk is the solution
of the problem

min
‖s‖≤ak

q(s), (2.5)

with
q(s) = f(xk) + ∇f(xk)′s +

1
2
s′∇2f(xk)s,

and ak > 0 the estimate at step k of the trust region. As the above (constrained) optimiza-
tion problem has always a solution, the direction sk is always defined. The computation of
the estimate ak is done, iteratively, in such a way to enforce the condition f(xk+1) < f(xk)
and to make sure that f(xk + sk) ≈ q(sk), i.e. that the change of f and the estimated
change of f are close.
Using these simple ingredients it is possible to construct the following algorithm.

Step 0. Given x0 ∈ IRn and a0 > 0.

Step 1. Set k = 0.

Step 2. Compute ∇f(xk). If ∇f(xk) = 0 STOP. Else go to Step 3.

Step 3. Compute sk solving problem (2.5).

Step 4. Compute9

ρk =
f(xk + sk) − f(xk)

q(sk) − f(xk)
. (2.6)

9If f is quadratic then ρk = 1 for all k.

36 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

Step 5. If ρk < 1/4 set ak+1 = ‖sk‖/4. If ρk > 3/4 and ‖sk‖ = ak set ak+1 = 2ak.
Else set ak+1 = ak.

Step 6. If ρk ≤ 0 set xk+1 = xk. Else set xk+1 = xk + sk.

Step 7. Set k = k + 1 and go to Step 2.

Remark. Equation (2.6) expresses the ratio between the actual change of f and the esti-
mated change of f . �

It is possible to prove that, if L(f(x0)) is compact and ∇2f is continuous, any accumulation
point resulting from the above algorithm is a stationary point of f , in which the second
order necessary conditions hold.
The update of ak is devised to enlarge or shrink the region of confidence on the basis of
the number ρk. It is possible to show that if {xk} converges to a local minimum in which
∇2f is positive definite, then ρk converges to one and the direction sk coincides, for k
sufficiently large, with the Newton direction. As a result, the method has quadratic speed
of convergence.
In practice, the solution of the problem (2.5) cannot be obtained analytically, hence ap-
proximate problems have to be solved. For, consider sk as the solution of the equation(

∇2f(xk) + νkI
)

sk = −∇f(xk), (2.7)

in which νk > 0 has to be determined with proper considerations. Under certain hypothe-
ses, the sk determined solving equation (2.7) coincides with the sk computed using the
method of the trust region.

Remark. A potential disadvantage of the method of the trust region is to reduce the step
along Newton direction even if the selection αk = 1 would be feasible. �

2.6.2 Non-monotonic line search

Experimental evidence shows that Newton’s method gives the best result if the step αk = 1
is used. Therefore, the use of αk < 1 along Newton direction, resulting e.g. from the
application of Armijo method, results in a degradation of the performance of the algorithm.
To avoid this phenomenon it has been suggested to relax the condition f(xk+1) < f(xk)
imposed on Newton algorithm, thus allowing the function f to increase for a certain
number of steps. For example, it is possible to substitute the reduction condition of
Armijo method with the condition

f(xk + αkdk) ≤ max
0≤j≤M

[f(xk−j)] + γαk∇f(xk)′dk

for all k ≥ M , where M > 0 is a fixed integer independent from k.

2.7. CONJUGATE DIRECTIONS METHODS 37

Gradient method Newton’s method

Information required at
each step

f and ∇f f , ∇f and ∇2f

Computation to find
the research direction

∇f(xk)
∇f(xk), ∇2f(xk),

−[∇2f(xk)]−1∇f(xk)

Convergence
Global if L(f(x0))
compact and ∇f

continuous

Local, but may be
rendered global

Behavior for quadratic
functions

Asymptotic
convergence

Convergence in one
step

Speed of convergence Linear for quadratic
functions

Quadratic (under
proper hypotheses)

Table 2.1: Comparison between the gradient method and Newton’s method.

2.6.3 Comparison between Newton’s method and the gradient method

The gradient method and Newton’s method can be compared from different point of views,
as described in Table 2.1. From the table, it is obvious that Newton’s method has better
convergence properties but it is computationally more expensive. There exist methods
which preserve some of the advantages of Newton’s method, namely speed of convergence
faster than the speed of the gradient method and finite convergence for quadratic functions,
without requiring the knowledge of ∇2f . Such methods are

• the conjugate directions methods;

• quasi-Newton methods.

2.7 Conjugate directions methods

Conjugate directions methods have been motivated by the need of improving the con-
vergence speed of the gradient method, without requiring the computation of ∇2f , as
required in Newton’s method.
A basic characteristic of conjugate directions methods is to find the minimum of a quadratic
function in a finite number of steps. These methods have been introduced for the solution
of systems of linear equations and have later been extended to the solution of unconstrained
optimization problems for non-quadratic functions.

38 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

Definition 5 Given a matrix Q = Q′, the vectors d1 and d2 are said to be Q-conjugate if

d′1Qd2 = 0.

Remark. If Q = I then two vectors are Q-conjugate if they are orthogonal. �

Theorem 10 Let Q ∈ IRn×n and Q = Q′ > 0. Let di ∈ IRn, for i = 0, · · · , k, be non-zero
vectors. If di are mutually Q-conjugate, i.e.

d′iQdj = 0,

for all i �= j, then the vectors di are linearly independent.

Proof. Suppose there exists constants αi, with αi �= 0 for some i, such that

α0d0 + · · ·αkdk = 0.

Then, left multiplying with Q and d′j yields

αjd
′
jQdj = 0,

which implies, as Q > 0, αj = 0. Repeating the same considerations for all j ∈ [0, k] yields
the claim. �

Consider now a quadratic function

f(x) =
1
2
x′Qx + c′x + d,

with x ∈ IRn and Q = Q′ > 0. The (global) minimum of f is given by

x� = −Q−1c,

and this can be computed using the procedure given in the next statement.

Theorem 11 Let Q = Q′ > 0 and let d0, d1, · · ·, dn−1 be n non-zero vectors mutually
Q-conjugate. Consider the algorithm

xk+1 = xk + αkdk

with

αk = −∇f(xk)′dk

d′kQdk
= −(x′

kQ + c′)dk

d′kQdk
.

Then, for any x0, the sequence {xk} converges, in at most n steps, to x� = −Q−1c, i.e. it
converges to the minimum of the quadratic function f .

2.7. CONJUGATE DIRECTIONS METHODS 39

Remark. Note that αk is selected at each step to minimize the function f(xk + αdk) with
respect to α, i.e. at each step an exact line search in the direction dk is performed. �

In the above statement we have assumed that the directions dk have been preliminarily
assigned. However, it is possible to construct a procedure in which the directions are
computed iteratively. For, consider the quadratic function f(x) = 1

2x′Qx + c′x + d, with
Q > 0, and the following algorithm, known as conjugate gradient method.

Step 0. Given x0 ∈ IRn and the direction

d0 = −∇f(x0) = −(Qx0 + c).

Step 1. Set k = 0.

Step 2. Let
xk+1 = xk + αkdk

with

αk = −∇f(xk)′dk

d′kQdk
− (x′

kQ + c′)dk

d′kQdk
.

Step 3. Compute dk+1 as follows

dk+1 = −∇f(xk+1) + βkdk,

with

βk =
∇f(xk+1)′Qdk

d′kQdk
.

Step 4. Set k = k + 1 and go to Step 2.

Remark. As already observed, αk is selected to minimize the function f(xk + αdk). More-
over, this selection of αk is also such that

∇f(xk+1)′dk = 0. (2.8)

In fact,
Qxk+1 = Qxk + αkQdk

hence
∇f(xk+1) = ∇f(xk) + αkQdk. (2.9)

Left multiplying with d′k yields

d′k∇f(xk+1) = d′k∇f(xk) + d′kQdkαk = d′k∇f(xk) − d′kQdk
∇f(xk)′dk

d′kQdk
= 0.

�

40 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

Remark. βk is such that dk+1 is Q-conjugate with respect to dk. In fact,

d′kQdk+1 = d′kQ

(
−∇f(xk+1) +

∇f(xk+1)′Qdk

d′kQdk
dk

)
= d′kQ (−∇f(xk+1) + ∇f(xk+1)) = 0.

Moreover, this selection of βk yields also

∇f(xk)′dk = −∇f(xk)′∇f(xk). (2.10)

�

For the conjugate gradient method it is possible to prove the following fact.

Theorem 12 The conjugate gradient method yields the minimum of the quadratic func-
tion

f(x) =
1
2
x′Qx + c′x + d,

with Q = Q′ > 0, in at most n iterations, i.e. there exists m ≤ n − 1 such that

∇f(xm+1) = 0.

Moreover
∇f(xj)′∇f(xi) = 0 (2.11)

and
d′jQdi = 0, (2.12)

for all [0,m + 1] � i �= j ∈ [0,m + 1].

Proof. To prove the (finite) convergence of the sequence {xk} it is enough to show that the
directions dk are Q-conjugate, i.e. that equation (2.12) holds. In fact, if equation (2.12)
holds the claim is a consequence of Theorem 11. �

The conjugate gradient algorithm, in the form described above, cannot be used for the
minimization of non-quadratic functions, as it requires the knowledge of the matrix Q,
which is the Hessian of the function f . Note that the matrix Q appears at two levels in
the algorithm: in the computation of the scalar βk required to compute the new direction
of research, and in the computation of the step αk. It is therefore necessary to modify the
algorithm to avoid the computation of ∇2f , but at the same time it is reasonable to make
sure that the modified algorithm coincides with the above one in the quadratic case.

2.7.1 Modification of βk

To begin with note that, by equation (2.9), βk can be written as

βk =
∇f(xk+1)′

∇f(xk+1) −∇f(xk)
αk

d′k
∇f(xk+1) −∇f(xk)

αk

=
∇f(xk+1)′ [∇f(xk+1) −∇f(xk)]

d′k [∇f(xk+1) −∇f(xk)]
,

2.7. CONJUGATE DIRECTIONS METHODS 41

and, by equation (2.8),

βk = −∇f(xk+1)′ [∇f(xk+1) −∇f(xk)]
d′k∇f(xk)

. (2.13)

Using equation (2.13), it is possible to construct several expressions for βk, all equivalent
in the quadratic case, but yielding different algorithms in the general (non-quadratic) case.
A first possibility is to consider equations (2.10) and (2.11) and to define

βk =
∇f(xk+1)′∇f(xk+1)
∇f(xk)′∇f(xk)

=
‖∇f(xk+1)‖2

‖∇f(xk)‖2
, (2.14)

which is known as Fletcher-Reeves formula.
A second possibility is to write the denominator as in equation (2.14) and the numerator
as in equation (2.13), yielding

βk =
∇f(xk+1)′ [∇f(xk+1) −∇f(xk)]

‖∇f(xk)‖2
, (2.15)

which is known as Polak-Ribiere formula. Finally, it is possible to have the denominator
as in (2.13) and the numerator as in (2.14), i.e.

βk = −‖∇f(xk+1)‖2

d′k∇f(xk)
. (2.16)

2.7.2 Modification of αk

As already observed, in the quadratic version of the conjugate gradient method also the
step αk depends upon Q. However, instead of using the αk given in Step 2 of the
algorithm, it is possible to use a line search along the direction αk. In this way, an
algorithm for non-quadratic functions can be constructed. Note that αk, in the algorithm
for quadratic functions, is also such that dk∇f(xk+1) = 0. Therefore, in the line search, it
is reasonable to select αk such that, not only f(xk+1) < f(xk), but also dk is approximately
orthogonal to ∇f(xk+1).

Remark. The condition of approximate orthogonality between dk and ∇f(xk+1) cannot be
enforced using Armijo method or Goldstein conditions. However, there are more sophisti-
cated line search algorithms, known as Wolfe conditions, which allow to enforce the above
constraint. �

2.7.3 Polak-Ribiere algorithm

As a result of the modifications discussed in the last sections, it is possible to construct an
algorithm for the minimization of general functions. For example, using equation (2.15)
we obtain the following algorithm, due to Polak-Ribiere, which has proved to be one of
the most efficient among the class of conjugate directions methods.

42 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

Step 0. Given x0 ∈ IRn.

Step 1. Set k = 0.

Step 2. Compute ∇f(xk). If ∇f(xk) = 0 STOP. Else let

dk =

⎧⎪⎪⎨⎪⎪⎩
−∇f(x0), if k = 0

−∇f(xk) +
∇f(xk)′ [∇f(xk) −∇f(xk−1)]

‖∇f(xk−1)‖2
dk−1, if k ≥ 1.

Step 3. Compute αk performing a line search along dk.

Step 4. Set xk+1 = xk + αkdk, k = k + 1 and go to Step 2.

Remark. The line search has to be sufficiently accurate, to make sure that all directions
generated by the algorithm are descent directions. A suitable line search algorithm is the
so-called Wolfe method, which is a modification of Goldstein method. �

Remark. To guarantee global convergence of a subsequence it is possible to use, every n
steps, the direction −∇f . In this case, it is said that the algorithm uses a restart procedure.
For the algorithm with restart it is possible to have quadratic speed of convergence in n
steps, i.e

‖xk+n − x�‖ ≤ γ‖xk − x�‖2,

for some γ > 0. �

Remark. It is possible to modify Polak-Ribiere algorithm to make sure that at each step
the angle condition holds. In this case, whenever the direction dk does not satisfy the
angle condition, it is sufficient to use the direction −∇f . Note that, enforcing the angle
condition, yields a globally convergent algorithm. �

Remark. Even if the use of the direction −∇f every n steps, or whenever the angle condi-
tion is not satisfied, allows to prove global convergence of Polak-Ribiere algorithm, it has
been observed in numerical experiments that such modified algorithms do not perform as
well as the original one. �

2.8 Quasi-Newton methods

Conjugate gradient methods have proved to be more efficient than the gradient method.
However, in general, it is not possible to guarantee superlinear convergence. The main
advantage of conjugate gradient methods is in the fact that they do not require to construct
and store any matrix, hence can be used in large scale problems.

2.8. QUASI-NEWTON METHODS 43

In small and medium scale problems, i.e. problems with less then a few hundreds decision
variables, in which ∇2f is not available, it is convenient to use the so-called quasi-Newton
methods.
Quasi Newton methods, as conjugate directions methods, have been introduced for qua-
dratic functions. They are described by an algorithm of the form

xk+1 = xk − αkHk∇f(xk),

with H0 given. The matrix Hk is an approximation of [∇2f(xk)]−1 and it is computed
iteratively at each step.
If f is a quadratic function, the gradient of f is given by

∇f(x) = Qx + c,

for some Q and c, hence for any x ∈ IRn and y ∈ IRn one has

∇f(y) −∇f(x) = Q(y − x),

or, equivalently,
Q−1[∇f(y) −∇f(x)] = y − x.

It is then natural, in general, to construct the sequence {Hk} such that

Hk+1[∇f(xk+1) −∇f(xk)] = xk+1 − xk. (2.17)

Equation (2.17) is known as quasi-Newton equation.
There exist several update methods satisfying the quasi-Newton equation. For simplicity,
set

γk = ∇f(xk+1) −∇f(xk),

and
δk = xk+1 − xk.

As a result, equation (2.17) can be rewritten as

Hk+1γk = δk.

One of the first quasi-Newton methods has been proposed by Davidon, Fletcher and Powell,
and can be summarized by the equations

DFP

⎧⎪⎪⎨⎪⎪⎩
H0 = I

Hk+1 = Hk +
δkδ

′
k

δ′kγk
− Hkγkγ

′
kHk

γ′
kHkγk

.
(2.18)

It is easy to show that the matrix Hk+1 satisfies the quasi-Newton equation (2.17), i.e.

Hk+1γk = Hkγk +
δkδ

′
k

δ′kγk
γk − Hkγkγ

′
kHk

γ′
kHkγk

γk

= Hkγk +
δ′kγk

δ′kγk
δk − γ′

kHkγk

γ′
kHkγk

Hkγk

= δk.

44 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

Moreover, it is possible to prove the following fact, which gives conditions such that the
matrices generated by DFP method are positive definite for all k.

Theorem 13 Let Hk = H ′
k > 0 and assume δ′kγk > 0. Then the matrix

Hk +
δkδ

′
k

δ′kγk
− Hkγkγ

′
kHk

γ′
kHkγk

is positive definite.

DFP method has the following properties. In the quadratic case, if αk is selected to
minimize

f(xk − αHk∇f(xk)),

then

• the directions dk = −Hk∇f(xk) are mutually conjugate;

• the minimum of the (quadratic) function is found in at most n steps, moreover
Hn = Q−1;

• the matrices Hk are always positive definite.

In the non-quadratic case

• the matrices Hk are positive definite (hence dk = −Hk∇f(xk) is a descent direction)
if δ′kγk > 0;

• it is globally convergent if f is strictly convex and if the line search is exact;

• it has superlinear speed of convergence (under proper hypotheses).

A second, and more general, class of update formulae, including as a particular case DFP
formula, is the so-called Broyden class, defined by the equations

Broyden

⎧⎪⎪⎨⎪⎪⎩
H0 = I

Hk+1 = Hk +
δkδ

′
k

δ′kγk
− Hkγkγ

′
kHk

γ′
kHkγk

+ φvkv
′
k,

(2.19)

with φ ≥ 0 and

vk = (γ′
kHkγk)1/2

(
δk

δ′kγk
− Hkγk

γ′
kHkγk

)
.

If φ = 0 then we obtain DFP formula, whereas for φ = 1 we have the so-called Broyden-
Fletcher-Goldfarb-Shanno (BFGS) formula, which is one of the preferred algorithms in
applications. From Theorem 13 it is easy to infer that, if H0 > 0, γ′

kδk > 0 and φ ≥ 0,
then all formulae in the class of Broyden generate matrices Hk > 0.

2.9. METHODS WITHOUT DERIVATIVES 45

Remark. Note that the condition δ′kγk > 0 is equivalent to

(∇f(xk+1) −∇f(xk))
′ dk > 0,

and this can be enforced with a sufficiently precise line search. �

For the method based on BFGS formula, a global convergence result, for convex functions
and in the case of non-exact (but sufficiently accurate) line search, has been proved.
Moreover, it has been shown that the algorithm has superlinear speed of convergence.
This algorithm can be summarized as follows.

Step 0. Given x0 ∈ IRn.

Step 1. Set k = 0.

Step 2. Compute ∇f(xk). If ∇f(xk) = 0 STOP. Else compute Hk with BFGS
equation and set

dk = −Hk∇f(xk).

Step 3. Compute αk performing a line search along dk.

Step 4. Set xk+1 = xk + αkdk, k = k + 1 and go to Step 2.

In the general case it is not possible to prove global convergence of the algorithm. However,
this can be enforced verifying (at the end of Step 2), if the direction dk satisfies an angle
condition, and if not use the direction dk = −∇f(xk). However, as already observed, this
modification improves the convergence properties, but reduces (sometimes drastically) the
speed of convergence.

2.9 Methods without derivatives

All the algorithms that have been discussed presuppose the knowledge of the derivatives
(first and/or second) of the function f . There are, however, also methods which do not
require such a knowledge. These methods can be divided in two classes: direct research
methods and methods using finite difference approximations.
Direct search methods are based upon the direct comparison of the values of the function
f in the points generated by the algorithm, without making use of the necessary condition
of optimality ∇f = 0. In this class, the most interesting methods, i.e. the methods for
which it is possible to give theoretical results, are those that make use cyclically of n
linearly independent directions. The simplest possible method, known as the method of
the coordinate directions, can be described by the following algorithm.

Step 0. Given x0 ∈ IRn.

Step 1. Set k = 0.

Step 2. Set j = 1.

46 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

Step 3. Set dk = ej , where ej is the j-th coordinate direction.

Step 4. Compute αk performing a line search without derivatives along dk.

Step 5. Set xk+1 = xk + αkdk, k = k + 1.

Step 6. If j < n set j = j + 1 and go to Step 3. If j = n go to Step 2.

It is easy to verify that the matrix

Pk =
[

dk dk+1 · · · dk+n−1

]
is such that

|detPk| = 1,

hence, if the line search is such that

lim
k→∞

∇f(xk)′dk

‖dk‖ = 0

and
lim

k→∞
‖xk+1 − xk‖ = 0,

convergence to stationary points is ensured by the general result in Theorem 5. Note
that, the line search can be performed using the parabolic line search method described
in Section 2.4.4.
The method of the coordinate directions is not very efficient, in terms of speed of conver-
gence. Therefore, a series of heuristics have been proposed to improve its performance.
One such heuristics is the so-called method of Jeeves and Hooke, in which not only the
search along the coordinate directions is performed, but also a search along directions
joining pairs of points generated by the algorithm. In this way, the search is performed
along what may be considered to be the most promising directions.
An alternative direct search method is the so-called simplex method (which should not
be confused with the simplex method of linear programming). The method starts with
n + 1 (equally spaced) points x(i) ∈ IRn (these points give a simplex in IRn). In each of
these points the function f is computed and the vertex where the function f attains the
maximum value is determined. Suppose this is the vertex x(n+1). This vertex is reflected
with respect to the center of the simplex, i.e. the point

xc =
1

n + 1

n+1∑
i=1

x(i).

As a result, the new vertex

x(n+2) = xc + α(xc − x(n+1))

where α > 0, is constructed, see Figure 2.7. The procedure is then repeated.

2.9. METHODS WITHOUT DERIVATIVES 47

xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx
xxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxx

x(4)

x(2)

x(1)

x(3)

x
*

x(5)

Figure 2.7: The simplex method. The points x(1), x(2) and x(3) yields the starting simplex.
The second simplex is given by the points x(1), x(2) and x(4). The third simplex is given
by the points x(2), x(4) and x(5).

It is possible that the vertex that is generated by one step of the algorithm is (again) the
one where the function f has its maximum. In this case, the algorithm cycles, hence the
next vertex has to be determined using a different strategy. For example, it is possible to
construct the next vertex by reflecting another of the remaining n vertex, or to shrink the
simplex.
As a stopping criterion it is possible to consider the condition

1
n + 1

n+1∑
i=1

(
f(x(i)) − f̄

)2
< ε (2.20)

where ε > 0 is assigned by the designer, and

f̄ =
1

n + 1

n+1∑
i=1

f(x(i)),

i.e. f̄ is the mean value of the f(x(i)). Condition (2.20) implies that the points x(i) are all
in a region where the function f is flat.
As already observed, direct search methods are not very efficient, and can be used only for
problems with a few decision variables and when approximate solutions are acceptable. As
an alternative, if the derivatives of the function f are not available, it is possible to resort
to numeric differentiation, e.g the entries of the gradient of f can be computed using the
so-called forward difference approximation, i.e.

∂f(x)
∂xi

≈ f(x + tei) − f(x)
t

,

48 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

where ei is the i-th column of the identity matrix of dimension n, and t > 0 has to be
fixed by the user. Note that there are methods for the computation of the optimal value
of t, i.e. the value of t which minimizes the approximation error.

Chapter 3

Nonlinear
programming

50 CHAPTER 3. NONLINEAR PROGRAMMING

3.1 Introduction

In this chapter we discuss the basic tools for the solution of optimization problems of the
form

P0

⎧⎪⎪⎨⎪⎪⎩
min

x
f(x)

g(x) = 0

h(x) ≤ 0.

(3.1)

In the problem P0 there are both equality and inequality constraints1. However, sometimes
for simplicity, or because a method has been developed for problems with special structure,
we will refer to problems with only equality constraints, i.e. to problems of the form

P1

{
min

x
f(x)

g(x) = 0,
(3.2)

or to problems with only inequality constraints, i.e. to problems of the form

P2

{
min

x
f(x)

h(x) ≤ 0.
(3.3)

In all the above problems we have x ∈ IRn, f : IRn → IR, g : IRn → IRm, and h : IRn → IRp.
From a formal point of view it is always possible to transform the equality constraint
gi(x) = 0 into a pair of inequality constraints, i.e. gi(x) ≤ 0 and −gi(x) ≤ 0. Hence,
problem P1 can be (equivalently) described by

P̃1

⎧⎪⎨⎪⎩
min

x
f(x)

g(x) ≤ 0
−g(x) ≤ 0,

which is a special case of problem P2. In the same way, it is possible to transform the
inequality constraint hi(x) ≤ 0 into the equality constraint hi(x) + y2

i = 0, where yi is
an auxiliary variable (also called slack variable). Therefore, defining the extended vector
z = [x′, y′]′, problem P2 can be rewritten as

P̃2

{
min

z
f(x)

h(x) + Y = 0,

with

Y =

⎡⎢⎢⎢⎢⎣
y2
1

y2
2
...

y2
p

⎤⎥⎥⎥⎥⎦ ,

which is a special case of problem P1.
1The condition h(x) ≤ 0 has to be understood element-wise, i.e. hi(x) ≤ 0 for all i.

3.2. DEFINITIONS AND EXISTENCE CONDITIONS 51

Note however, that the transformation of equality constraints into inequality constraints
yields an increase in the number of constraints, whereas the transformation of inequality
constraints into equality constraints results in an increased number of variables.
Given problem P0 (or P1, or P2), a point x satisfying the constraints is said to be an
admissible point, and the set of all admissible points is called the admissible set and it is
denoted with X . Note that the problem makes sense only if X �= ∅.
In what follows it is assumed that the functions f , g and h are two times differentiable,
however we do not make any special hypothesis on the form of such functions. Note
however, that if g and h are linear there are special algorithms, and linear/quadratic
programming algorithms are used if f is linear/quadratic and g and h are linear. We do
not discuss these special algorithms, and concentrate mainly on algorithms suitable for
general problems.

3.2 Definitions and existence conditions

Consider the problem P0 (or P1, or P2). The following definitions are instrumental to
provide a necessary condition and a sufficient condition for the existence of local minima.

Definition 6 An open ball with center x� and radius θ > 0 is the set

B(x�, θ) = {x ∈ IRn | ‖x − x�‖ < θ}.

Definition 7 A point x� ∈ X is a constrained local minimum if there exists θ > 0 such
that

f(y) ≥ f(x�), (3.4)

for all y ∈ X ∩ B(x�, θ).
A point x� ∈ X is a constrained global minimum if

f(y) ≥ f(x�), (3.5)

for all y ∈ X .
If the inequality (3.4) (or (3.5)) holds with a strict inequality sign for all y �= x� then the
minimum is said to be strict.

Definition 8 The i-th inequality constraints hi(x) is said to be active at x̃ if hi(x̃) = 0.
The set Ia(x̃) is the set of all indexes i such that hi(x̃) = 0, i.e.

Ia(x̃) = {i ∈ {1, 2, · · · , p} | hi(x̃) = 0}.
The vector ha(x̃) is the subvector of h(x) corresponding to the active constraints, i.e.

ha(x̃) = {hi(x̃) | i ∈ Ia(x̃).

Definition 9 A point x̃ is a regular point for the constraints if at x̃ the gradients of the
active constraints, i.e. the vectors ∇gi(x̃), for i = 1, · · · ,m and ∇hi(x̃), for i ∈ Ia(x̃), are
linearly independent.

52 CHAPTER 3. NONLINEAR PROGRAMMING

The definition of regular point is given because, the necessary and the sufficient conditions
for optimality, in the case of regular points are relatively simple. To state these conditions,
and with reference to problem P0, consider the Lagrangian function

L(x, λ, ρ) = f(x) + λ′g(x) + ρ′h(x) (3.6)

with λ ∈ IRm and ρ ∈ IRp. The vectors λ and ρ are called multipliers.
With the above ingredients and definitions it is now possible to provide a necessary con-
dition and a sufficient condition for local optimality.

Theorem 14 [First order necessary condition] Consider problem P0. Suppose x� is a
local solution of the problem P0, and x� is a regular point for the constraints.
Then there exist (unique) multipliers λ� and ρ� such that2

∇xL(x�, λ�, ρ�) = 0
g(x�) = 0
h(x�) ≤ 0
ρ� ≥ 0
(ρ�)′h(x�) = 0.

(3.7)

Conditions (3.7) are known as Kuhn-Tucker conditions.

Definition 10 Let x� be a local solution of problem P0 and let ρ� be the corresponding
(optimal) multiplier. At x� the condition of strict complementarity holds if ρ�

i > 0 for all
i ∈ Ia(x�).

Theorem 15 [Second order sufficient condition] Consider the problem P0. Assume that
there exist x�, λ� and ρ� satisfying conditions (3.7). Suppose moreover that ρ� is such
that the condition of strict complementarity holds at x�. Suppose finally that

s′∇2
xxL(x�, λ�, ρ�)s > 0 (3.8)

for all s �= 0 such that ⎡⎢⎢⎣
∂g(x�)

∂x
∂ha(x�)

∂x

⎤⎥⎥⎦ s = 0.

Then x� is a strict constrained local minimum of problem P0.

Remark. Necessary and sufficient conditions for a global minimum can be given under
proper convexity hypotheses, i.e. if the function f is convex in X , and if X is a convex
set. This is the case, for example if there are no inequality constraints and if the equality
constraints are linear. �

2We denote with ∇xf the vector of the partial derivatives of f with respect to x.

3.2. DEFINITIONS AND EXISTENCE CONDITIONS 53

Remark. If all points in X are regular points for the constraints then conditions (3.7) yield
a set of points P, i.e. the points satisfying conditions (3.7), and among these points there
are all constrained local minima (and also the constrained global minimum, if it exists).
However, if there are points in X which are not regular points for the constraints, then
the set P may not contain all constrained local minima. These have to be searched in the
set P and in the set of non-regular points. �

Remark. In what follows, we will always tacitly assume that the conditions of regularity
and of strict complementarity hold. �

3.2.1 A simple proof of Kuhn-Tucker conditions for equality constraints

Consider problem P1, i.e. a minimization problem with only equality constraints, and a
point x� such that g(x�) = 0, i.e. x� ∈ X . Suppose that3

rank
∂g

∂x
(x�) = m

i.e. x� is a regular point for the constraints, and that x� is a constrained local minimum.
By the implicit function theorem, there exist a neighborhood of x�, a partition of the
vector x, i.e.

x =

[
u
v

]
,

with u ∈ IRm and v ∈ IRn−m, and a function φ such that the constrains g(x) = 0 can be
(locally) rewritten as

u = φ(v).

As a result (locally){
min

x
f(x)

g(x) = 0
⇔
{

min
u,v

f(u, v)

u = φ(v)
⇔ min

v
f(φ(v), v),

i.e. problem P1 is (locally) equivalent to a unconstrained minimization problem. Therefore

0 = ∇f(φ(v�), v�) =
(

∂f

∂u

∂φ

∂v
+

∂f

∂v

)
x�

=

(
−∂f

∂u

(
∂g

∂u

)−1 ∂g

∂v
+

∂f

∂v

)
x�

.

Setting

λ� =

(
−∂f

∂u

(
∂g

∂u

)−1
)′

x�

yields (
∂f

∂v
+ (λ�)′

∂g

∂v

)
x�

= 0 (3.9)

3Note that m is the number of the equality constraints, and that, to avoid trivial cases, m < n.

54 CHAPTER 3. NONLINEAR PROGRAMMING

and (
∂f

∂u
+ (λ�)′

∂g

∂u

)
x�

= 0. (3.10)

Finally, let
L = f + λ′g,

note that equations (3.9) and (3.10) can be rewritten as

∇xL(x�, λ�) = 0,

and this, together with g(x�) = 0, is equivalent to equations (3.7).

3.2.2 Quadratic cost function with linear equality constraints

Consider the function
f(x) =

1
2
x′Qx,

with x ∈ IRn and Q = Q′ > 0, the equality constraints

g(x) = Ax − b = 0,

with b ∈ IRm and m < n, and the Lagrangian function

L(x, λ) =
1
2
x′Qx + λ′(Ax − b).

A simple application of Theorem 14 yields the necessary conditions of optimality

∇xL(x�, λ�) = Qx� + A′λ� = 0
g(x�) = Ax� − b = 0.

(3.11)

Suppose now that the matrix A is such that AQ−1A′ is invertible4. As a result, the only
solution of equations (3.11) is

x� = Q−1A′(AQ−1A′)−1b λ� = −(AQ−1A′)−1b.

Finally, by Theorem 15, it follows that x� is a strict constrained (global) minimum.

3.3 Nonlinear programming methods: introduction

The methods of non-linear programming that have been mostly studied in recent years
belong to two categories. The former includes all methods based on the transformation
of a constrained problem into one or more unconstrained problems, in particular the so-
called (exact or sequential) penalty function methods and (exact or sequential) augmented
Lagrangian methods. Sequential methods are based on the solution of a sequence of
problems, with the property that the sequence of the solutions of the subproblems converge

4This is the case if rankA = m.

3.4. SEQUENTIAL AND EXACT METHODS 55

to the solution of the original problem. Exact methods are based on the fact that, under
suitable assumptions, the optimal solutions of an unconstrained problem coincides with
the optimal solution of the original problem.
The latter includes the methods based on the transformation of the original problem into
a sequence of constrained quadratic problems.
From the above discussion it is obvious that, to construct algorithms for the solution of
non-linear programming problems, it is necessary to use efficient unconstrained optimiza-
tion routines.
Finally, in any practical implementation, it is also important to quantify the complexity
of the algorithms in terms of number and type of operations (inversion of matrices, differ-
entiation, ...), and the speed of convergence. These issues are still largely open, and will
not be addressed in these notes.

3.4 Sequential and exact methods

3.4.1 Sequential penalty functions

In this section we study the so-called external sequential penalty functions. This name is
based on the fact that the solutions of the resulting unconstrained problems are in general
not admissible. There are also internal penalty functions (known as barrier functions) but
this can be used only for problems in which the admissible set has a non-empty interior.
As a result, such functions cannot be used in the presence of equality constraints.
The basic idea of external sequential penalty functions is very simple. Consider problem
P0, the function

q(x) =

⎧⎨⎩
0, if x ∈ X

+∞, if x �∈ X
(3.12)

and the function
F = f + q. (3.13)

It is obvious that the unconstrained minimization of F yields a solution of problem P0.
However, because of its discontinuous nature, the minimization of F cannot be performed.
Nevertheless, it is possible to construct a sequence of continuously differentiable functions,
converging to F , and it is possible to study the convergence of the minima of such a
sequence of functions to the solutions of problem P0.
For, consider a continuously differentiable function p such that

p(x) =

⎧⎨⎩
0, if x ∈ X

> 0, if x �∈ X ,
(3.14)

and the function

Fε = f +
1
ε
p,

56 CHAPTER 3. NONLINEAR PROGRAMMING

with ε > 0. It is obvious that5

lim
ε→0

Fε = F.

The function Fε is known as external penalty function. The attribute external is due to
the fact that, if x̄ is a minimum of Fε in general p(x̄) �= 0, i.e. x̄ �∈ X . The term 1

ε p is called
penalty term, as it penalizes the violation of the constraints. In general, the function p
has the following form

p =
m∑

i=1

(gi)2 +
p∑

i=1

(max(0, hi))2. (3.15)

Consider now a strictly decreasing sequence {εk} such that limk→∞ εk = 0. The sequential
penalty function method consists in solving the sequence of unconstrained problems

min
x

Fεk
(x),

with x ∈ IRn. The most important convergence results for this methods are summarized
in the following statements.

Theorem 16 Consider the problem P0. Suppose that for all σ > 0 the set6

X σ = {x ∈ IRn | |gi(x)| ≤ σ, i = 1, · · · ,m} ∩ {x ∈ IRn | hi(x) ≤ σ, i = 1, · · · , p}

is compact. Suppose moreover that for all k the function Fεk
(x) has a global minimum xk.

Then the sequence {xk} has (at least) one converging subsequence, and the limit of any
converging subsequence is a global minimum for problem P0.

Theorem 17 Let x� be a strict constrained local minimum for problem P0. Then there
exist a sequence {xk} and an integer k̄ > 0 such that {xk} converges to x� and, for all
k ≥ k̄, xk is a local minimum of Fεk

(x).

The construction of the function Fε is apparently very simple, and this is the main ad-
vantage of the method. However, the minimization of the function Fε may be difficult,
especially for small values of ε. In fact, it is possible to show, even via simple examples,
that as ε tends to zero the Hessian matrix of the function Fε becomes ill conditioned. As
a result, any unconstrained minimization algorithm used to minimize Fε has a very slow
convergence rate. To alleviate this problem, it is possible to use, in the minimization of
Fεk+1

, as initial point the point xk. However, this is close to the minimum of Fεk+1
only if

εk+1 is close to εk, i.e. only if the sequence {εk} converges slowly to zero.
We conclude that, to avoid the ill conditioning of the Hessian matrix of Fε, hence the slow
convergence of each unconstrained optimization problem, it is necessary to slow down the
convergence of the sequence {xk}, i.e. slow convergence is an intrinsic property of the
method. This fact has motivated the search for alternatives methods, as described in the
next sections.

5Because of the discontinuity of F , the limit has to be considered with proper care.
6The set X σ is sometimes called the relaxed admissible set.

3.4. SEQUENTIAL AND EXACT METHODS 57

Remark. It is possible to show that the local minima of Fε describe (continuous) trajectories
that can be extrapolated. This observation is exploited in some sophisticated methods for
the selection of initial estimate for the point xk. However, even with the addition of this
extrapolation procedure, the convergence of the method remains slow. �

Remark. Note that, if the function p is defined as in equation (3.15), then the function
Fε is not two times differentiable everywhere, i.e. it is not differentiable in all points in
which an inequality constraints is active. This property restricts the class of minimization
algorithms that can be used to minimize Fε. �

3.4.2 Sequential augmented Lagrangian functions

Consider problem P1, i.e. an optimization problem with only equality constraints. For
such a problem the Lagrangian function is

L = f + λ′g,

and the first order necessary conditions require the existence of a multiplier λ� such that,
for any local solution x� of problem P1 one has

∇xL(x�, λ�) = 0
∇λL(x�, λ�) = g(x�) = 0.

(3.16)

The first of equations (3.16) is suggestive of the fact that the function L(x, λ�) has a
unconstrained minimum in x�. This is actually not the case, as L(x, λ�) is not convex in a
neighborhood of x�. However it is possible to render the function L(x, λ�) convex with the
addition of a penalty term, yielding the new function, known as augmented Lagrangian
function7,

La(x, λ�) = L(x, λ�) +
1
ε
‖g(x)‖2, (3.17)

which, for ε sufficiently small, but such that 1/ε is finite, has a unconstrained minimum
in x�. This intuitive discussion can be given a formal justification, as shown in the next
statement.

Theorem 18 Suppose that at x� and λ� the sufficient conditions for a strict constrained
local minimum for problem P1 hold. Then there exists ε̄ > 0 such that for any ε ∈ (0, ε̄)
the point x� is a unconstrained local minimum for the function La(x, λ�).
Vice-versa, if for some ε̄ and λ�, at x� the sufficient conditions for a unconstrained local
minimum for the function La(x, λ�) hold, and g(x�) = 0, then x� is a strict constrained
local minimum for problem P1.

The above theorem highlights the fact that, under the stated assumptions, the function
La(x, λ�) is an (external) penalty function, with the property that, to give local minima

7To be precise we should write La(x, λ�, ε), however we omit the argument ε.

58 CHAPTER 3. NONLINEAR PROGRAMMING

for problem P1 it is not necessary that ε → 0. Unfortunately, this result is not of practical
interest, because it requires the knowledge of λ�. To obtain a useful algorithm, it is possible
to make use of the following considerations.
By the implicit function theorem, applied to the first of equation (3.16), we infer that
there exist a neighborhood of λ�, a neighborhood of x�, and a continuously differentiable
function x(λ) such that (locally)

∇xLa(x(λ), λ) = 0.

Moreover, for any ε ∈ (0, ε̄), as ∇2
xxLa(x�, λ�) is positive definite also ∇2

xxLa(x, λ) is locally
positive definite. As a result, x(λ) is the only value of x that, for any fixed λ, minimizes
the function La(x, λ). It is therefore reasonable to assume that if λk is a good estimate of
λ�, then the minimization of La(x, λk) for a sufficiently small value of ε, yields a point xk

which is a good approximation of x�.
On the basis of the above discussion it is possible to construct the following minimization
algorithm for problem P1.

Step 0. Given x0 ∈ IRn, λ1 ∈ IRm and ε1 > 0.

Step 1. Set k = 1.

Step 2. Find a local minimum xk of La(x, λk) using any unconstrained minimization
algorithm, with starting point xk−1.

Step 3. Compute a new estimate λk+1 of λ�.

Step 4. Set εk+1 = βεk, with β = 1 if ‖g(xk+1)‖ ≤ 1
4‖g(xk)‖ or β < 1 otherwise.

Step 5. Set k = k + 1 and go to Step 2.

In Step 3 it is necessary to construct a new estimate λk+1 of λk. This can be done with
proper considerations on the function La(x(λ), λ), introduced in the above discussion.
However, without providing the formal details, we mention that one of the most used
update laws for λ are described by the equations

λk+1 = λk +
2
εk

g(xk), (3.18)

or
λk+1 = λk −

[
∇2La(x(λk), λk)

]−1
g(xk), (3.19)

whenever the indicated inverse exists.
Note that the convergence of the sequence {xk} to x� is limited by the convergence of the
sequence {λk} to λ�. It is possible to prove that, if the update law (3.18) is used then the
algorithm as linear convergence, whereas if (3.19) is used the convergence is superlinear.

Remark. Similar considerations can be done for problem P2. For, recall that problem P2 can
be recast, increasing the number of variables, as an optimization problem with equality

3.4. SEQUENTIAL AND EXACT METHODS 59

constraints, i.e. problem P̃2. For such an extended problem, consider the augmented
Lagrangian

La(x, y, ρ) = f(x) +
p∑

i=1

ρi

(
hi(x) + y2

i

)
+

1
ε

p∑
i=1

(
hi(x) + y2

i

)2
,

and note that, in principle, it would be possible to make use of the results developed with
reference to problem P1. However, the function La can be analytically minimized with
respect to the variables yi. In fact, a simple computation shows that the (global) minimum
of La as a function of y is attained at

yi(x, ρ) =

√
−min

(
0, hi(x) +

ε

2
ρi

)
.

As a result, the augmented Lagrangian function for problem P2 is given by

La(x, ρ) = f(x) + ρ′h(x) +
1
ε
‖h(x)‖2 − 1

ε

p∑
i=1

(
min(0, hi(x) +

ε

2
ρi)
)2

.

�

3.4.3 Exact penalty functions

An exact penalty function, for a given constrained optimization problem, is a function of
the same variables of the problem with the property that its unconstrained minimization
yields a solution of the original problem. The term exact as opposed to sequential indicates
that only one, instead of several, minimization is required.
Consider problem P1, let x� be a local solution and let λ� be the corresponding multi-
plier. The basic idea of exact penalty functions methods is to determine the multiplier λ
appearing in the augmented Lagrangian function as a function of x, i.e. λ = λ(x), with
λ(x�) = λ�. With the use of this function one has8

La(x, λ(x)) = f(x) + λ(x)′g(x) +
1
ε
‖g(x)‖2.

The function λ(x) is obtained considering the necessary condition of optimality

∇xLa(x�, λ�) = ∇f(x�) +
∂g(x�)′

∂x
λ� = 0 (3.20)

and noting that, if x� is a regular point for the constraints then equation (3.20) can be
solved for λ� yielding

λ� = −
(

∂g(x�)
∂x

∂g(x�)′

∂x

)−1 ∂g(x�)
∂x

∇f(x�).

8As in previous sections we omit the argument ε.

60 CHAPTER 3. NONLINEAR PROGRAMMING

This equality suggests to define the function λ(x) as

λ(x) = −
(

∂g(x)
∂x

∂g(x)′

∂x

)−1 ∂g(x)
∂x

∇f(x),

and this is defined at all x where the indicated inverse exists, in particular at x�.
It is possible to show that this selection of λ(x) yields and exact penalty function for
problem P1. For, consider the function

G(x) = f(x) − g(x)′
(

∂g(x)
∂x

∂g(x)′

∂x

)−1 ∂g(x)
∂x

∇f(x) +
1
ε
‖g(x)‖2,

which is defined and differentiable in the set

X̃ = {x ∈ IRn ‖ rank
∂g(x)
∂x

= m}, (3.21)

and the following statements.

Theorem 19 Let X̄ be a compact subset of X̃ . Assume that x� is the only global minimum
of f in X ∩ X̄ and that x� is in the interior of X̄ . Then there exists ε̄ > 0 such that, for
any ε ∈ (0, ε̄), x� is the only global minimum of G in X̄ .

Theorem 20 Let X̄ be a compact subset of X̃ . Then there exists ε̄ > 0 such that, for any
ε ∈ (0, ε̄), if x� is a unconstrained minimum of G(x) and x� ∈ X̄ , then x� is a constrained
local minimum for problem P1.

Theorems 19 and 20 show that it is legitimate to search solutions of problem P1 minimizing
the function G for sufficiently small values of ε. Note that it is possible to prove stronger
results, showing that there is (under certain hypotheses) a one to one correspondence
between the minima of problem P1 and the minima of the function G, provided ε is
sufficiently small.
For problem P2 it is possible to proceed as discussed in Section 3.4.2, i.e. transforming
problem P2 into problem P̃2 and then minimizing analytically with respect to the new
variables yi. However, a different and more direct route can be taken. Consider problem
P2 and the necessary conditions

∇xL(x�, ρ�) = ∇f(x�) +
∂h(x�)′

∂x
ρ� = 0 (3.22)

and
ρ�

i hi(x�) = 0, (3.23)

for i = 1, · · · , p. Premultiplying equation (3.22) by ∂h(x�)
∂x and equation (3.23) by γ2hi(x�),

with γ > 0, and adding, yields(
∂h(x�)

∂x

∂h(x�)′

∂x
+ γ2H2(x�)

)
ρ� +

∂h(x�)
∂x

∇f(x�) = 0,

3.4. SEQUENTIAL AND EXACT METHODS 61

where
H(x�) = diag(h1(x�), · · · , hp(x�)).

As a result, a natural candidate for the function ρ(x) is

ρ(x) = −
(

∂h(x)
∂x

∂h(x)′

∂x
+ γ2H2(x)

)−1 ∂h(x)
∂x

∇f(x),

which is defined whenever the indicated inverse exists, in particular in the neighborhood
of any regular point. With the use of this function, it is possible to define an exact penalty
function for problem P2 and to establish results similar to those illustrated in Theorems
19 and 20.
The exact penalty functions considered in this section provide, in principle, a theoretically
sound way of solving constrained optimization problem. However, in practice, they have
two major drawbacks. Firstly, at each step, it is necessary to invert a matrix with dimen-
sion equal to the number of constraint. This operation is numerically ill conditioned if
the number of constraints is large. Secondly, the exact penalty functions may not be suf-
ficiently regular to allow the use of unconstrained minimization methods with fast speed
of convergence, e.g. Newton method.

3.4.4 Exact augmented Lagrangian functions

An exact augmented Lagrangian function, for a given constrained optimization problem, is
a function, defined on an augmented space with dimension equal to the number of variables
plus the number of constraint, with the property that its unconstrained minimization yields
a solution of the original problem. Moreover, in the computation of such a function it is
not necessary to invert any matrix.
To begin with, consider problem P1 and recall that, for such a problem, a sequential
augmented Lagrangian function has been defined adding to the Lagrangian function a
term, namely 1

ε ‖g(x)‖2, which penalizes the violation of the necessary condition g(x) = 0.
This term, for ε sufficiently small, renders the function La convex in a neighborhood of
x�. A complete convexification can be achieved adding a further term that penalizes the
violation of the necessary condition ∇xL(x, λ) = 0. More precisely, consider the function

S(x, λ) = f(x) + λ′g(x) +
1
ε
‖g(x)‖2 + η‖∂g(x)

∂x
∇xL(x, λ)‖2, (3.24)

with ε > 0 and η > 0. The function (3.24) is continuously differentiable and it is such that,
for ε sufficiently small, the solutions of problem P1 are in a one to one correspondence
with the points (x, λ) which are local minima of S, as detailed in the following statements.

Theorem 21 Let X̄ be a compact set. Suppose x� is the unique global minimum of f in
the set X ∩ X̄ and x� is an interior point of X̄ . Let λ� be the multiplier associated to
x�. Then, for any compact set Λ ⊂ IRm such that λ� ∈ Λ there exists ε̄ such that, for all
ε ∈ (0, ε̄), (x�, λ�) is the unique global minimum of S in X × Γ.

62 CHAPTER 3. NONLINEAR PROGRAMMING

Theorem 22 Let9 X × Λ ⊂ X̃ × IRm be a compact set. Then there exists ε̄ > 0 such
that, for all ε ∈ (0, ε̄), if (x�, λ�) is a unconstrained local minimum of S, then x� is a
constrained local minimum for problem P1 and λ� is the corresponding multiplier.

Theorems 21 and 22 justify the use of a unconstrained minimization algorithm, applied to
the function S, to find local (or global) solutions of problem P1.
Problem P2 can be dealt with using the same considerations done in Section 3.4.2.

3.5 Recursive quadratic programming

Recursive quadratic programming methods have been widely studied in the past years. In
this section we provide a preliminary description of such methods. For, consider problem
P1 and suppose that x� and λ� are such that the necessary conditions (3.7) hold. Consider
now a series expansion of the function L(x, λ�) in a neighborhood of x�, i.e.

L(x, λ�) = f(x�) +
1
2
(x − x�)′∇2

xxL(x�, λ�)(x − x�) +

a series expansion of the constraint, i.e.

0 = g(x) = g(x�) +
∂g(x�)

∂x
(x − x�) + ...

and the problem

P̃Q1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

x
f(x�) +

1
2
(x − x�)′∇2

xxL(x�, λ�)(x − x�)

∂g(x�)
∂x

(x − x�) = 0.

Note that problem P̃Q1 has the solution x�, and the corresponding multiplier is λ = 0,
which is not equal (in general) to λ�. This phenomenon is called bias of the multiplier,
and can be avoided by modifying the objective function and considering the new problem

PQ1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

x
f(x�) + ∇f(x�)′(x − x�) +

1
2
(x − x�)′∇2

xxL(x�, λ�)(x − x�)

∂g(x�)
∂x

(x − x�) = 0,
(3.25)

which has solution x� with multiplier λ�. This observation suggests to consider the se-
quence of quadratic programming problems

PQk+1
1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

δ
f(xk) + ∇f(xk)′δ +

1
2
δ′∇2

xxL(xk, λk)δ

∂g(xk)
∂x

δ = 0,
(3.26)

9The set X̃ is defined as in equation (3.21).

3.5. RECURSIVE QUADRATIC PROGRAMMING 63

where δ = x − xk, and xk and λk are the current estimates of the solution and of the
multiplier. The solution of problem PQk+1

1 yields new estimates xk+1 and λk+1. To assess
the local convergence of the method, note that the necessary conditions for problem PQk+1

1

yields the system of equations⎡⎢⎣ ∇2
xxL(xk, λk)

∂g(xk)′

∂x
∂g(xk)

∂x
0

⎤⎥⎦[δ
λ

]
= −
[
∇f(xk)
g(xk)

]
, (3.27)

and this system coincides with the system arising from the application of Newton method
to the solution of the necessary conditions for problem P1. As a consequence, the solutions
of the problems PQk+1

1 converge to a solution of problem P1 under the same hypotheses
that guarantee the convergence of Newton method.

Theorem 23 Let x� be a strict constrained local minimum for problem P1, and let λ�

be the corresponding multiplier. Suppose that for x� and λ� the sufficient conditions of
Theorem 15 hold. Then there exists an open neighborhood Ω ⊂ IRn × IRm of the point
(x�, λ�) such that, if (x0, λ0) ∈ Ω, the sequence {xk, λk} obtained solving the sequence of
quadratic programming problems PQk+1

1 , with k = 0, 1, · · ·, converges to (x�, λ�).
Moreover, the speed of convergence is superlinear, and, if f and g are three times differ-
entiable, the speed of convergence is quadratic.

Remark. It is convenient to solve the sequence of quadratic programming problems PQk+1
1 ,

instead of solving the equations (3.27) with Newton method, because, for the former it is
possible to exclude converge to maxima or saddle points. �

In the case of problem P2, using considerations similar to the one above, it is easy to
obtain the following sequence of quadratic programming problems

PQk+1
2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

δ
f(xk) + ∇f(xk)′δ +

1
2
δ′∇2

xxL(xk, λk)δ

∂h(xk)
∂x

δ + h(xk) ≤ 0.
(3.28)

This sequence of problems has to be solved iteratively to generate a sequence {xk, λk}
that, under hypotheses similar to those of Theorem 23, converges to a strict constrained
local minimum of problem P2.
The method described are the basis for a large class of iterative methods.
A first disadvantage of the proposed iterative schemes is that it is necessary to compute
the second derivatives of the functions of the problem. This computation can be avoided,
using the same philosophy of quasi-Newton methods.
A second disadvantage is in the fact that, being based on Newton algorithm, only local
convergence can be guaranteed. However, it is possible to combine the method with global
convergent methods: these are used to generate a pair (x̃, λ̃) sufficiently close to (x�, λ�)

64 CHAPTER 3. NONLINEAR PROGRAMMING

and then recursive quadratic programming methods are used to obtain fast convergence
to (x�, λ�).
A third disadvantage is in the fact that there is no guarantee that the sequence of admis-
sible sets generated by the algorithm is non-empty at each step.
Finally, it is worth noting that, contrary to most of the existing methods, quadratic
programming methods do not rely on the use of a penalty term.

Remark. There are several alternative recursive quadratic programming methods which
alleviate the drawbacks of the methods described. These are (in general) based on the
use of quadratic approximation of penalty functions. For brevity, we do not discuss these
methods. �

3.6 Concluding remarks

In this section we briefly summarize advantages and disadvantages of the nonlinear pro-
gramming methods discussed.
Sequential penalty functions methods are very simple to implement, but suffer from the
ill conditioning associated to large penalties (i.e. to small values of ε). As a result, these
methods can be used if approximate solutions are acceptable, or in the determination of
initial estimates for more precise, but only locally convergent, methods. Note, in fact, that
not only an approximation of the solution x� can be obtained, but also an approximation
of the corresponding multiplier λ�. For example, for problem P1, a (approximate) solution
x̄ is such that

∇Fεk
(x̄) = ∇f(x̄) +

2
εk

∂g(x̄)
∂x

g(x̄) = 0,

hence, the term 2
εk

g(x̄) provides an approximation of λ�.
Sequential augmented Lagrangian functions do not suffer from ill conditioning, and yield
faster speed of convergence then that attainable using sequential penalty functions.
The methods based on exact penalty functions do not require the solution of a sequence
of problems. However, they require the inversion of a matrix of dimension equal to the
number of constraints, hence their applicability is limited to problems with a small number
of constraints.
Exact augmented Lagrangian functions can be built without inverting any matrix. How-
ever, the minimization has to be performed in an extended space.
Recursive quadratic programming methods require the solution, at each step, of a con-
strained quadratic programming problem. Their main problem is that there is no guaran-
tee that the admissible set is non-empty at each step.
We conclude that it is not possible to decide which is the best method. Each method has its
own advantages and disadvantages. Therefore, the selection of a nonlinear programming
method has to be driven by the nature of the problem: and has to take into consideration
the number of variables, the regularity of the involved functions, the required precision,
the computational cost,

Chapter 4

Global
optimization

66 CHAPTER 4. GLOBAL OPTIMIZATION

4.1 Introduction

Given a function f : IRn → IR, global optimization methods aim at finding the global
minimum of f , i.e. a point x� such that

f(x�) ≤ f(x)

for all x ∈ IRn. Among these methods it is possible to distinguish between deterministic
methods and probabilistic methods.
In the following sections we provide a very brief introductions to global minimization
methods. It is worth noting that this is an active area of research.

4.2 Deterministic methods

4.2.1 Methods for Lipschitz functions

Consider a function f : IRn → IR and suppose it is Lipschitz with constant L > 0, i.e.

|f(x1) − f(x2)| ≤ L‖x1 − x2‖, (4.1)

for all x1 ∈ IRn and x2 ∈ IRn. Note that equation (4.1) implies that

f(x) ≥ f(x0) − L‖x − x0‖ (4.2)

and that
f(x) ≤ f(x0) + L‖x − x0‖, (4.3)

for all x ∈ IRn and x0 ∈ IRn, see Figure 4.1 for a geometrical interpretation.

.

x0

f(x)+L||x-x ||0

f(x)-L||x-x ||0

Figure 4.1: Geometrical interpretation of the Lipschitz conditions (4.2) and (4.3).

Methods for Lipschitz functions are suitable to find a global solution of the problem

min
x

f(x),

with
x ∈ In = {x ∈ IRn | Ai ≤ xi ≤ Bi},

4.2. DETERMINISTIC METHODS 67

and Ai < Bi given, under the assumptions that the set In contains a global minimum of
f , the function f is Lipschitz in In and the Lipschitz constant L of f in In is known.
Under these assumptions it is possible to construct a very simple global minimization
algorithm, known as Schubert-Mladineo algorithm, as follows.

Step 0. Given x0 ∈ In and L̃ > L.

Step 1. Set k = 0.

Step 2. Let
Fk(x) = max

j=0,···,k
{f(xj) − L̃‖x − xj‖}

and compute xk+1 such that

Fk(xk+1) = min
x∈In

Fk(x).

Step 4. Set k = k + 1 and go to Step 2.

Remark. The functions Fk in Step 2 of the algorithm have a very special form. This can
be exploited to construct special algorithms solving the problem

min
x∈In

Fk(x)

in a finite number of iterations. �

For Schubert-Mladineo algorithm it is possible to prove the following statement.

Theorem 24 Let f� be the minimum value of f in In, let x� be such that f(x�) = f� and
let F �

k be the minima of the functions Fk in In. Let

Φ = {x ∈ In | f(x) = f�}

and let {xk} be the sequence generated by the algorithm. Then

• lim
k→∞

f(xk) = f�;

• the sequence {F �
k } is non-decreasing and lim

k→∞
F �

k = f�;

• lim
k→∞

inf
x∈Φ

‖x − xk‖ = 0;

• f(xk) ≥ f� ≥ Fk−1(xk).

Schubert-Mladineo algorithm can be given, if x ∈ I1 ⊂ IR, a simple geometrical interpre-
tation, as shown in Figure 4.2.
The main advantage of Schubert-Mladineo algorithm is that it does not require the com-
putation of derivatives, hence it is also applicable to functions which are not everywhere

68 CHAPTER 4. GLOBAL OPTIMIZATION

f(x).

x =A1 x0

.

B

F (x)0

. f(x).

x =A1 x0

.

B

F (x)1

.
.

x2

Figure 4.2: Geometrical interpretation of Schubert-Mladineo algorithm.

differentiable. Moreover, unlike other global minimization algorithms, it is possible to
prove the convergence of the sequence {xk} to the global minimum. Finally, it is possible
to define a simple stopping condition. For, note that if {xk} and {F �

k } are the sequences
generated by the algorithm, then

f(xk) ≥ f� ≥ F �
k

and
f(xk) ≥ f� ≥ f(xk) + rk,

where rk = F �
k − f(xk) and limk→∞ rk = 0. As a result, if |rk| < ε, for some ε > 0, the

point xk gives a good approximation of the minimum of f .
The main disadvantage of the algorithm is in the assumption that the set In contains
a global minimum of f in IRn. Moreover, it may be difficult to compute the Lipschitz
constant L.

4.2.2 Methods of the trajectories

The basic idea of the global optimization methods known as methods of the trajectories
is to construct trajectories which go through all local minima. Once all local minima
are determined, the global minimum can be easily isolated. These methods have been
originally proposed in the 70’s, but only recently, because of increased computer power
and of a reformulation using tools from differential geometry, they have proved to be
effective.
The simplest and first method of the trajectories is the so-called Branin method. Consider
the function f and assume ∇f is continuous. Fix x0 and consider the differential equations

d

dt
∇f(x(t)) = ±∇f(x(t)) x(0) = x0. (4.4)

The solutions x(t) of such differential equations are such that

∇f(x(t)) = ∇f(x0)e±t,

i.e. ∇f(x(t)) is parallel to ∇f(x0) for all t. Using these facts it is possible to describe
Branin algorithm.

4.2. DETERMINISTIC METHODS 69

Step 0. Given x0.

Step 1. Compute the solution x(t) of the differential equation

d

dt
∇f(x(t)) = −∇f(x(t))

with x(0) = x0.

Step 2. The point x� = lim
t→∞x(t) is a stationary point of f , in fact lim

t→∞∇f(x(t)) = 0.

Step 3. Consider a perturbation of the point x�, i.e. the point x̃ = x� + ε and
compute the solution x(t) of the differential equation

d

dt
∇f(x(t)) = ∇f(x(t)).

Along this trajectory the gradient ∇f(x(t)) increases, hence the trajectory escapes
from the region of attraction of x0.

Step 4. Fix t̄ > 0 and assume that x(t̄) is sufficiently away from x0. Set x0 = x(t̄)
and go to Step 1.

Note that, if the perturbation ε and the time t̄ are properly selected, at each iteration the
algorithm generates a new stationary point of the function f .

Remark. If ∇2f is continuous then the differential equations (4.4) can be written as

ẋ(t) = ±
[
∇2f(x(t))

]−1 ∇f(x(t)).

Therefore Branin method is a continuous equivalent of Newton method. Note however
that, as ∇2f(x(t)) may become singular, the above equation may be meaningless. In such
a case it is possible to modify Branin method using ideas borrowed from quasi-Newton
algorithms. �

Branin method is very simple to implement. However, it has several disadvantages.

• It is not possible to prove convergence to the global minimum.

• Even if the method yields the global minimum, it is not possible to know how many
iterations are needed to reach such a global minimum, i.e. there is no stopping
criterion.

• The trajectories x(t) are attracted by all stationary points of f , i.e. both minima
and maxima.

• There is not a systematic way to select ε and t̄.

70 CHAPTER 4. GLOBAL OPTIMIZATION

x
0
*x1

Figure 4.3: Interpretation of the tunneling phase.

4.2.3 Tunneling methods

Tunneling methods have been proposed to find, in an efficient way, the global minimum
of a function with several (possibly thousands) of local minima.
Tunneling algorithms are composed of a sequence of cycles, each having two phases. The
first phase is the minimization phase, i.e. a local minimum is computed. The second phase
is the tunneling phase, i.e. a new starting point for the minimization phase is computed.

Minimization phase

Given a point x0, a local minimization, using any unconstrained optimization algorithm,
is performed. This minimization yields a local minimum x�

0.

Tunneling phase

A point x1 �= x�
0 such that

f(x1) = f(x�
0)

is determined. See Figure 4.3 for a geometrical interpretation.

In theory, tunneling methods generate a sequence {x�
k} such that

f(x�
k+1) ≤ f(x�

k)

4.3. PROBABILISTIC METHODS 71

xk
*

x

T(x,)xk
*

f(x)

Figure 4.4: The functions f(x) and T (x, x�
k).

and the sequence {x�
k} converges to the global minimum without passing through all

local minima. This is the most important advantage of tunneling methods. The main
disadvantage is the difficulty in performing the tunneling phase. In general, given a point
x�

k a point x such that f(x) = f(x�
k) is constructed searching for a zero of the function

(see Figure 4.4)

T (x, x�
k) =

f(x) − f(x�
k)

‖x − x�
k‖2λ

,

where the parameter λ > 0 has to be selected such that T (x�
k, x

�
k) > 0.

Finally, it is worth noting that tunneling methods do not have a stopping criterion, i.e.
the algorithm attempts to perform the tunneling phase even if the point x�

k is a global
minimum.

4.3 Probabilistic methods

4.3.1 Methods using random directions

In this class of algorithms at each iteration a randomly selected direction, having unity
norm, is selected. The theoretical justification of such an algorithm rests on Gaviano
theorem. This states that the sequence {xk} generated using the iteration

xk+1 = xk + αkdk,

72 CHAPTER 4. GLOBAL OPTIMIZATION

where dk is randomly selected on a unity norm sphere and αk is such that

f(xk + αkdk) = min
α

f(xk + αdk),

is such that for any ε > 0 the probability that

f(xk) − f� < ε,

where f� is a global minimum of f , tends to one as k → ∞.

4.3.2 Multistart methods

Multistart methods are based on the fact that for given sets D and A, with measures
m(D) and m(A), and such that

1 ≥ m(A)
m(D)

= α ≥ 0,

the probability that, selecting N random points in D, one of these points is in A is

P (A,N) = 1 − (1 − α)N .

As a result
lim

N→∞
P (A,N) = 1.

Therefore, if A is a neighborhood of a global minimum of f in D, we conclude that, selecting
a sufficiently large number of random points in D, one of these will (almost surely) be
close to the global minimum. Using these considerations it is possible to construct a whole
class of algorithms, with similar properties, as detailed hereafter.

Step 0. Set f� = ∞.

Step 1. Select a random point x0 ∈ IRn.

Step 2. If f(x0) > f� go to Step 1.

Step 3. Perform a local minimization starting from x0 and yielding a point x�
0. Set

f� = f(x�
0).

Step 4. Check if x�
0 satisfies a stopping criterion. If not, go to Step 1.

4.3.3 Stopping criteria

The main disadvantage of probabilistic algorithms is the lack of a theoretically sound
stopping criterion. The most promising and used stopping criterion is based on the con-
struction of a probabilistic approximation P̃ (w) of the function

P (w) =
m({x ∈ D | f(x) ≤ w})

m(D)
.

Once the function P̃ (w) is known, a point x� is regarded as a good approximation of the
global minimum of f if

P̃ (f(x�)) ≤ ε � 1.

Scanned with CamScanner

Scanned with CamScanner

Scanned w
ith C

am
Scanner

Scanned w
ith C

am
Scanner

Scanned w
ith C

am
Scanner

Scanned w
ith C

am
Scanner

Scanned w
ith C

am
Scanner

Scanned w
ith C

am
Scanner

Scanned w
ith C

am
Scanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned w
ith C

am
Scanner

Scanned w
ith C

am
Scanner

Scanned w
ith C

am
Scanner

Scanned w
ith C

am
Scanner

Scanned w
ith C

am
Scanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned w
ith C

am
Scanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned w
ith C

am
Scanner

Sc
an

ne
d

w
ith

 C
am

Sc
an

ne
r

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

S
can

n
ed

 w
ith

 C
am

S
can

n
er

S
can

n
ed

 w
ith

 C
am

S
can

n
er

	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	e624c82e02bb5fb52b03a12a4b3b85cb7ec226a761aecf35e7cb486c64cd0570.pdf
	webinar on role of microcontroller
	webinar on role of microcontroller

